IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i10p1695-d942651.html
   My bibliography  Save this article

A LoRaWAN IoT System for Smart Agriculture for Vine Water Status Determination

Author

Listed:
  • Antonio Valente

    (Engineering Department, School of Sciences and Technology, UTAD, 5000-801 Vila Real, Portugal
    INESC TEC—INESC Technology and Science, 4200-465 Porto, Portugal)

  • Carlos Costa

    (Engineering Department, School of Sciences and Technology, UTAD, 5000-801 Vila Real, Portugal
    CISeD—Research Centre in Digital Services, Polytechnic of Viseu, 3504-510 Viseu, Portugal)

  • Leonor Pereira

    (CoLAB Vines&Wines—National Collaborative Laboratory for the Portuguese Wine Sector, Associação para o Desenvolvimento da Viticultura Duriense (ADVID), Edifício Centro de Excelência da Vinha e do Vinho, Régia Douro Park, 5000-033 Vila Real, Portugal)

  • Bruno Soares

    (CoLAB Vines&Wines—National Collaborative Laboratory for the Portuguese Wine Sector, Associação para o Desenvolvimento da Viticultura Duriense (ADVID), Edifício Centro de Excelência da Vinha e do Vinho, Régia Douro Park, 5000-033 Vila Real, Portugal)

  • José Lima

    (INESC TEC—INESC Technology and Science, 4200-465 Porto, Portugal
    Research Centre in Digitalization and Intelligent Robotics (CeDRI) and Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal)

  • Salviano Soares

    (Engineering Department, School of Sciences and Technology, UTAD, 5000-801 Vila Real, Portugal
    IEETA—Institute of Electronics and Informatics Engineering of Aveiro, 3810-193 Aveiro, Portugal)

Abstract

In view of the actual climate change scenario felt across the globe, resource management is crucial, especially with regard to water. In this sense, continuous monitoring of plant water status is essential to optimise not only crop management but also water resources. Currently, monitoring of vine water status is done through expensive and time-consuming methods that do not allow continuous monitoring, which is especially inconvenient in places with difficult access. The aim of the developed work was to install three groups of sensors (Environmental, Plant and Soil) in a vineyard and connect them through LoRaWAN protocol for data transmission. The results demonstrate that the implemented system is capable of continuous data communication without data loss. The reduced cost and superior range of LoRaWAN compared to WiFi or Bluetooth is especially important for applications in remote areas where cellular networks have little coverage. Altogether, this methodology provides a remote, continuous and more effective method to monitor plant water status and is capable of supporting producers in more efficient management of their farms and water resources.

Suggested Citation

  • Antonio Valente & Carlos Costa & Leonor Pereira & Bruno Soares & José Lima & Salviano Soares, 2022. "A LoRaWAN IoT System for Smart Agriculture for Vine Water Status Determination," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1695-:d:942651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/10/1695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/10/1695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    2. García-Tejera, Omar & López-Bernal, Álvaro & Orgaz, Francisco & Testi, Luca & Villalobos, Francisco J., 2021. "The pitfalls of water potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitre D. Dimitrov, 2023. "Internet and Computers for Agriculture," Agriculture, MDPI, vol. 13(1), pages 1-7, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ajay Kumar & Ashraf, Shah Nawaz & Sharma, Sandeep Kumar, 2023. "Farmer’s Perception on Climatic Factors and Social-economic Characteristics in the Agricultural Sector of Gujarat," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 4(01), March.
    2. Md Asduzzaman Kiron & Md Elias Hossain & Md. Mehedi Hasan Chokdar, 2025. "Assessing the Economic Impact of Climate Change on Rice Production in Bangladesh: A Ricardian Approach for Sustainable Agriculture," Economics of Disasters and Climate Change, Springer, vol. 9(2), pages 359-373, July.
    3. Lea Primožič & Andreja Kutnar, 2022. "Sustainability Communication in Global Consumer Brands," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    4. Sanjeev Kumar & Ajay K. Singh, 2023. "Modeling the effects of climate change on agricultural productivity: evidence from Himachal Pradesh, India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 521-548, June.
    5. Mohamed A. Rashwan & Ibrahim M. Al-Helal & Saad M. Al-Kahtani & Fahad N. Alkoaik & Adil A. Fickak & Waleed A. Almasoud & Faisal A. Alshamiry & Mansour N. Ibrahim & Ronnel B. Fulleros & Mohamed R. Shad, 2025. "Performance Evaluation of Volcanic Stone Pad Used in Evaporative Cooling System," Energies, MDPI, vol. 18(8), pages 1-16, April.
    6. Mastawesha Misganaw Engdaw & Brian Mayanja & Sabrina Rose & Ana Maria Loboguerrero & Aniruddha Ghosh, 2024. "Bridging evidence gaps in attributing loss and damage, and measures to minimize impacts," PLOS Climate, Public Library of Science, vol. 3(8), pages 1-11, August.
    7. Dae-Ho Jung & Jung-Eek Son, 2021. "CO 2 Utilization Strategy for Sustainable Cultivation of Mushrooms and Lettuces," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
    8. Peres Ofori, 2021. "Mortgage market and climate variability adaptation: evidence from the mortgage market in emerging cities," SN Business & Economics, Springer, vol. 1(12), pages 1-22, December.
    9. Muhammad Zakir Abdullah, 2025. "Impact of Climate Change on Paddy Productivity in Malaysia's Granary Areas: A Markov Chain Monte Carlo Analysis ," GATR Journals afr238, Global Academy of Training and Research (GATR) Enterprise.
    10. Marius Mihai Micu & Toma Adrian Dinu & Gina Fintineru & Valentina Constanta Tudor & Elena Stoian & Eduard Alexandru Dumitru & Paula Stoicea & Adina Iorga, 2022. "Climate Change—Between “Myth and Truth” in Romanian Farmers’ Perception," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    11. repec:zib:zbesmy:v:5:y:2024:i:1:p:12-17 is not listed on IDEAS
    12. Ahmed Awad & Wan Luo & Nadhir Al-Ansari & Ahmed Elbeltagi & Mustafa El-Rawy & Hesham N. Farres & Mohamed EL-Sayed Gabr, 2021. "Farmers’ Awareness in the Context of Climate Change: An Underutilized Way for Ensuring Sustainable Farmland Adaptation and Surface Water Quality," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    13. Dina Pereira & Joao Carlos Correia Leitao & Pedro Dinis Gaspar & Cristina Fael & Isabel Falorca & Wael Khairy & Nadya Wahid & Hicham El Yousfi & Bassou Bouazzama & Jan Siering & Harald Hansmann & Jele, 2023. "Exploring Irrigation and Water Supply Technologies for Smallholder Farmers in the Mediterranean Region," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    14. Jiaxu Ling & Yongji Xue & Chenyujing Yang & Yuanyuan Zhang, 2022. "Effect of Farmers’ Awareness of Climate Change on Their Willingness to Adopt Low-Carbon Production: Based on the TAM-SOR Model," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    15. Monika Puchlik & Janina Piekutin & Katarzyna Dyczewska, 2021. "Analysis of the Impact of Climate Change on Surface Water Quality in North-Eastern Poland," Energies, MDPI, vol. 15(1), pages 1-14, December.
    16. Li-Tao Yang & Yong-Gang Sun & Chuan Jiang & Jun-Fang Zhao & Jin-Xia Qian, 2023. "Vulnerability Assessment of Potato Growth to Climate Change Based on GIS in Inner Mongolia, China," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    17. Ibrahim Farhan & Hind Sarayrah & Wissam Hayek & Hebah Alkhasoneh & Faisal Almayouf, 2025. "Analyzing Wheat Production in Jordan: The Role of Population Dynamics, Climate Variability, and GIS-Based Projections," Sustainability, MDPI, vol. 17(8), pages 1-28, April.
    18. Ahmed A. Abdelmoneim & Roula Khadra & Angela Elkamouh & Bilal Derardja & Giovanna Dragonetti, 2023. "Towards Affordable Precision Irrigation: An Experimental Comparison of Weather-Based and Soil Water Potential-Based Irrigation Using Low-Cost IoT-Tensiometers on Drip Irrigated Lettuce," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    19. Ishaan Dawar & Maanas Singal & Vijayant Singh & Sumita Lamba & Shreyal Jain, 2025. "Predicting air quality index using machine learning: a case study of the Himalayan city of Dehradun," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5821-5847, March.
    20. Limor Dina Gonen & Tchai Tavor & Uriel Spiegel, 2024. "Adapting and Thriving: Global Warming and the Wine Industry," SAGE Open, , vol. 14(1), pages 21582440241, February.
    21. Kanwar Muhammad Javed Iqbal & Nadia Akhtar & Sarah Amir & Muhammad Irfan Khan & Ashfaq Ahmad Shah & Muhammad Atiq Ur Rehman Tariq & Wahid Ullah, 2022. "Multi-Variable Governance Index Modeling of Government’s Policies, Legal and Institutional Strategies, and Management for Climate Compatible and Sustainable Agriculture Development," Sustainability, MDPI, vol. 14(18), pages 1-19, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1695-:d:942651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.