IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i5p153-d354601.html
   My bibliography  Save this article

The Combined Effect of Different Sowing Methods and Seed Rates on the Quality Features and Yield of Winter Wheat

Author

Listed:
  • Angelique Twizerimana

    (Department of Crop Cultivation and Farming System, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Etienne Niyigaba

    (Department of Crop Cultivation and Farming System, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Innocent Mugenzi

    (Department of Crop Cultivation and Farming System, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Wansim Aboubakar Ngnadong

    (Department of Crop Cultivation and Farming System, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Chuan Li

    (Department of Crop Cultivation and Farming System, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Tian Qi Hao

    (Department of Crop Cultivation and Farming System, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Bosco J. Shio

    (Department of Crop Cultivation and Farming System, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Jiang Bo Hai

    (Department of Crop Cultivation and Farming System, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

Abstract

Wheat ( Triticum aestivum L.) is one of the main staple foods worldwide. Wide precise sowing (Wps) is a sowing method believed to produce the highest winter wheat grain yields; however, the reasons for its high yields and its effect on quality traits have not been effectively studied. Hence, a two-year field experiment was conducted to evaluate the effect of three sowing methods, dibbling (Db), drilling (Dr), and Wps and seed rates (112.5 kg ha −1 , 150 kg ha −1 , 187.5 kg ha −1 , and 225 kg ha −1 ) on grain yield and the quality of winter wheat. Wps, Dr, and Db produced statistically similar results in terms of the grain yield and most of the quality traits measured. The grain yield increased significantly with the increasing rate, the highest being 7488.89 kg ha −1 at a seed rate of 225 kg ha −1 . The total protein, albumin, and globulin were not affected by the sowing methods, but prolamin and glutelin were affected by the Dr and Wps, respectively. The total starch in both years, and the amylose and amylopectin in the first year, were affected only by the seed rates, with 60.11%, 23.2%, 38.63%, or higher values. The results indicated that for the wheat yield and quality traits, Wps, Dr and Db can mostly be used interchangeably. For the protein, starch, and grain yield, the suitable seed rates were 112.5 kg ha −1 , 150 kg ha −1 , and 225 kg ha −1 , respectively.

Suggested Citation

  • Angelique Twizerimana & Etienne Niyigaba & Innocent Mugenzi & Wansim Aboubakar Ngnadong & Chuan Li & Tian Qi Hao & Bosco J. Shio & Jiang Bo Hai, 2020. "The Combined Effect of Different Sowing Methods and Seed Rates on the Quality Features and Yield of Winter Wheat," Agriculture, MDPI, vol. 10(5), pages 1-20, May.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:5:p:153-:d:354601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/5/153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/5/153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dandan, Zhao & Jiayin, Shen & Kun, Lang & Quanru, Liu & Quanqi, Li, 2013. "Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 118(C), pages 87-92.
    2. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    3. Intsar H.H, Al-Hilfy & S.A. Wahid & H.M.K. Al-Abod & S. A. A. Al-Salmani & Md. Reaz Mahamud & Prof. Dr. Md. Bellal Hossain, 2019. "Grain Yield And Quality Of Wheat As Affected By Cultivars And Seeding Rates," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 3(1), pages 8-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    2. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    3. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    4. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    5. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    6. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    7. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    8. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    9. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    10. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    11. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    12. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    13. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    14. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    15. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    16. Horacio Augstburger & Fabian Käser & Stephan Rist, 2019. "Assessing Food Systems and Their Impact on Common Pool Resources and Resilience," Land, MDPI, vol. 8(4), pages 1-25, April.
    17. Samuel I. Haruna & Nsalambi V. Nkongolo, 2020. "Influence of Cover Crop, Tillage, and Crop Rotation Management on Soil Nutrients," Agriculture, MDPI, vol. 10(6), pages 1-14, June.
    18. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    19. Simon R. Swaffield & Robert C. Corry & Paul Opdam & Wendy McWilliam & Jørgen Primdahl, 2019. "Connecting business with the agricultural landscape: business strategies for sustainable rural development," Business Strategy and the Environment, Wiley Blackwell, vol. 28(7), pages 1357-1369, November.
    20. Bosire, Caroline K. & Krol, Maarten S. & Mekonnen, Mesfin M. & Ogutu, Joseph O. & de Leeuw, Jan & Lannerstad, Mats & Hoekstra, Arjen Y., 2016. "Meat and milk production scenarios and the associated land footprint in Kenya," Agricultural Systems, Elsevier, vol. 145(C), pages 64-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:5:p:153-:d:354601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.