Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this articleAccounting and Big Data: Trends, opportunities and direction for practitioners and researchers
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Earley, Christine E., 2015. "Data analytics in auditing: Opportunities and challenges," Business Horizons, Elsevier, vol. 58(5), pages 493-500.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Lee, In, 2017. "Big data: Dimensions, evolution, impacts, and challenges," Business Horizons, Elsevier, vol. 60(3), pages 293-303.
- Lee, In & Shin, Yong Jae, 2020. "Machine learning for enterprises: Applications, algorithm selection, and challenges," Business Horizons, Elsevier, vol. 63(2), pages 157-170.
- Alnoor Bhimani & Leslie Willcocks, 2014. "Digitisation, 'Big Data' and the transformation of accounting information," Accounting and Business Research, Taylor & Francis Journals, vol. 44(4), pages 469-490, August.
- Crawley, Michael & Wahlen, James, 2014. "Analytics in empirical/archival financial accounting research," Business Horizons, Elsevier, vol. 57(5), pages 583-593.
- Zoubin Ghahramani, 2015. "Probabilistic machine learning and artificial intelligence," Nature, Nature, vol. 521(7553), pages 452-459, May.
- Rick Payne, 2014. "Discussion of 'Digitisation, 'Big Data' and the transformation of accounting information' by Alnoor Bhimani and Leslie Willcocks (2014)," Accounting and Business Research, Taylor & Francis Journals, vol. 44(4), pages 491-495, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rikhardsson, Pall & Yigitbasioglu, Ogan, 2018. "Business intelligence & analytics in management accounting research: Status and future focus," International Journal of Accounting Information Systems, Elsevier, vol. 29(C), pages 37-58.
- Moll, Jodie & Yigitbasioglu, Ogan, 2019. "The role of internet-related technologies in shaping the work of accountants: New directions for accounting research," The British Accounting Review, Elsevier, vol. 51(6).
- Oesterreich, Thuy Duong & Teuteberg, Frank & Bensberg, Frank & Buscher, Gandalf, 2019. "The controlling profession in the digital age: Understanding the impact of digitisation on the controller's job roles, skills and competences," International Journal of Accounting Information Systems, Elsevier, vol. 35(C).
- Knudsen, Dan-Richard, 2020. "Elusive boundaries, power relations, and knowledge production: A systematic review of the literature on digitalization in accounting," International Journal of Accounting Information Systems, Elsevier, vol. 36(C).
- Thorsten Sellhorn, 2020. "Machine Learning und empirische Rechnungslegungsforschung: Einige Erkenntnisse und offene Fragen [Machine Learning and Empirical Accounting Research: Some Findings and Open Questions]," Schmalenbach Journal of Business Research, Springer, vol. 72(1), pages 49-69, March.
- Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael, 2022. "The perils of working with big data, and a SMALL checklist you can use to recognize them," Business Horizons, Elsevier, vol. 65(4), pages 481-492.
- Willcock, Simon & MartÃnez-López, Javier & Hooftman, Danny A.P. & Bagstad, Kenneth J. & Balbi, Stefano & Marzo, Alessia & Prato, Carlo & Sciandrello, Saverio & Signorello, Giovanni & Voigt, Brian & , 2018. "Machine learning for ecosystem services," Ecosystem Services, Elsevier, vol. 33(PB), pages 165-174.
- Khaldoon Al-Htaybat & Larissa von Alberti-Alhtaybat & Zaidoon Alhatabat, 2018. "Educating digital natives for the future: accounting educators’ evaluation of the accounting curriculum," Accounting Education, Taylor & Francis Journals, vol. 27(4), pages 333-357, July.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "State Space Approach to Adaptive Artificial Intelligence Modeling: Application to Financial Portfolio with Fuzzy System," CARF F-Series CARF-F-422, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Shoshan, Vered & Hazan, Tamir & Plonsky, Ori, 2023. "BEAST-Net: Learning novel behavioral insights using a neural network adaptation of a behavioral model," OSF Preprints kaeny, Center for Open Science.
- Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
- Stephane Helleringer & Chong You & Laurence Fleury & Laetitia Douillot & Insa Diouf & Cheikh Tidiane Ndiaye & Valerie Delaunay & Rene Vidal, 2019. "Improving age measurement in low- and middle-income countries through computer vision: A test in Senegal," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(9), pages 219-260.
- Gambetta, Nicolás & García-Benau, María Antonia & Zorio-Grima, Ana, 2016. "Data analytics in banks' audit: The case of loan loss provisions in Uruguay," Journal of Business Research, Elsevier, vol. 69(11), pages 4793-4797.
- Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
- Ali, Abdul & Mancha, Ruben & Pachamanova, Dessislava, 2018. "Correcting analytics maturity myopia," Business Horizons, Elsevier, vol. 61(2), pages 211-219.
- Thiemo Fetzer & Stephan Kyburz, 2024.
"Cohesive Institutions and Political Violence,"
The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 133-150, January.
- Thiemo Fetzer & Stephan Kyburz, 2018. "Cohesive Institutions and Political Violence," HiCN Working Papers 271, Households in Conflict Network.
- Thiemo Fetzer & Stephan Kyburz, 2019. "Cohesive Institutions and Political Violence," Working Papers 503, Center for Global Development.
- Thiemo Fetzer & Stephan Kyburz, 2018. "Cohesive Institutions and Political Violence," OxCarre Working Papers 210, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
- Fetzer, Thiemo & Kyburz, Stephan, 2018. "Cohesive Institutions and Political Violence," CAGE Online Working Paper Series 377, Competitive Advantage in the Global Economy (CAGE).
- Thiemo Fetzer & Stephan Kyburz, 2018. "Cohesive Institutions and Political Violence," Empirical Studies of Conflict Project (ESOC) Working Papers 11, Empirical Studies of Conflict Project.
- Fetzer, Thiemo & Kyburz, Stephan, 2018. "Cohesive Institutions and Political Violence," The Warwick Economics Research Paper Series (TWERPS) 1166, University of Warwick, Department of Economics.
- Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024.
"Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda,"
GLO Discussion Paper Series
1445, Global Labor Organization (GLO).
- Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," IZA Discussion Papers 17064, Institute of Labor Economics (IZA).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fan:frfrfr:v:html10.3280/fr2022-002004. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Rosato (email available below). General contact details of provider: http://www.francoangeli.it/riviste/sommario.aspx?IDRivista=163 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.