IDEAS home Printed from https://ideas.repec.org/a/spr/sjobre/v72y2020i1d10.1007_s41471-020-00086-1.html
   My bibliography  Save this article

Machine Learning und empirische Rechnungslegungsforschung: Einige Erkenntnisse und offene Fragen
[Machine Learning and Empirical Accounting Research: Some Findings and Open Questions]

Author

Listed:
  • Thorsten Sellhorn

    (LMU München)

Abstract

Zusammenfassung Im Zuge der digitalen Transformation von Wirtschaft und Gesellschaft ergeben sich zunehmend Anwendungsfelder für Ansätze des maschinellen Lernens nicht nur in der Rechnungslegungspraxis, sondern auch in der betriebswirtschaftlichen Forschung auf diesem Gebiet. Der nachfolgende Beitrag diskutiert selektiv einige Einsatzgebiete von Machine-Learning-Ansätzen in der Unternehmensberichterstattung, der Abschlussprüfung sowie der Unternehmensanalyse und -bewertung. Zudem werden aktuelle und potenzielle Anwendungen in der empirischen Forschung aufgezeigt sowie limitierende Faktoren diskutiert.

Suggested Citation

  • Thorsten Sellhorn, 2020. "Machine Learning und empirische Rechnungslegungsforschung: Einige Erkenntnisse und offene Fragen [Machine Learning and Empirical Accounting Research: Some Findings and Open Questions]," Schmalenbach Journal of Business Research, Springer, vol. 72(1), pages 49-69, March.
  • Handle: RePEc:spr:sjobre:v:72:y:2020:i:1:d:10.1007_s41471-020-00086-1
    DOI: 10.1007/s41471-020-00086-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41471-020-00086-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s41471-020-00086-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Quick, Reiner & Marten, K.-U. & Ruhnke, K., 2015. "Wirtschaftsprüfung, Grundlagen des betrieblichen Prüfungswesens nach nationalen und internationalen Normen," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77034, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Larcker, David F. & Rusticus, Tjomme O., 2010. "On the use of instrumental variables in accounting research," Journal of Accounting and Economics, Elsevier, vol. 49(3), pages 186-205, April.
    3. Ulf Br&?ggemann & J?rg-Markus Hitz & Thorsten Sellhorn, 2013. "Intended and Unintended Consequences of Mandatory IFRS Adoption: A Review of Extant Evidence and Suggestions for Future Research," European Accounting Review, Taylor & Francis Journals, vol. 22(1), pages 1-37, May.
    4. Ian D. Gow & David F. Larcker & Peter C. Reiss, 2016. "Causal Inference in Accounting Research," Journal of Accounting Research, Wiley Blackwell, vol. 54(2), pages 477-523, May.
    5. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    6. Gerard Hoberg & Gordon Phillips, 2016. "Text-Based Network Industries and Endogenous Product Differentiation," Journal of Political Economy, University of Chicago Press, vol. 124(5), pages 1423-1465.
    7. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    8. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    9. Earley, Christine E., 2015. "Data analytics in auditing: Opportunities and challenges," Business Horizons, Elsevier, vol. 58(5), pages 493-500.
    10. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
    11. Adrian Gepp & Martina K. Linnenluecke & Terrence J. O’Neill & Tom Smith, 2018. "Big data techniques in auditing research and practice: Current trends and future opportunities," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 40(1), pages 102-115, February.
    12. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    13. Gow, Ian D. & Larcker, David F. & Reiss, Peter C., 2016. "Causal Inference in Accounting Research," Research Papers 3393, Stanford University, Graduate School of Business.
    14. Robert Bloomfield & Mark W. Nelson & Eugene Soltes, 2016. "Gathering Data for Archival, Field, Survey, and Experimental Accounting Research," Journal of Accounting Research, Wiley Blackwell, vol. 54(2), pages 341-395, May.
    15. Libby, Robert & Bloomfield, Robert & Nelson, Mark W., 2002. "Experimental research in financial accounting," Accounting, Organizations and Society, Elsevier, vol. 27(8), pages 775-810, November.
    16. Gerard Hoberg & Gordon Phillips, 2010. "Product Market Synergies and Competition in Mergers and Acquisitions: A Text-Based Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 23(10), pages 3773-3811, October.
    17. Leamer, Edward E & Leonard, Herman B, 1983. "Reporting the Fragility of Regression Estimates," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 306-317, May.
    18. Beneish, Messod D., 1997. "Detecting GAAP violation: implications for assessing earnings management among firms with extreme financial performance," Journal of Accounting and Public Policy, Elsevier, vol. 16(3), pages 271-309.
    19. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    20. repec:eme:jal000:j.acclit.2017.05.003 is not listed on IDEAS
    21. Baruch Lev, 2018. "The deteriorating usefulness of financial report information and how to reverse it," Accounting and Business Research, Taylor & Francis Journals, vol. 48(5), pages 465-493, July.
    22. Kexing Ding & Baruch Lev & Xuan Peng & Ting Sun & Miklos A. Vasarhelyi, 2020. "Machine learning improves accounting estimates: evidence from insurance payments," Review of Accounting Studies, Springer, vol. 25(3), pages 1098-1134, September.
    23. Baruch Lev, 2019. "Ending the Accounting-for-Intangibles Status Quo," European Accounting Review, Taylor & Francis Journals, vol. 28(4), pages 713-736, August.
    24. Susan Athey & Guido Imbens, 2015. "A Measure of Robustness to Misspecification," American Economic Review, American Economic Association, vol. 105(5), pages 476-480, May.
    25. Gassen, Joachim, 2014. "Causal inference in empirical archival financial accounting research," Accounting, Organizations and Society, Elsevier, vol. 39(7), pages 535-544.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Rahul & Deb, Soumya Guha & Mukherjee, Shubhadeep, 2020. "Do words reveal the latent truth? Identifying communication patterns of corporate losers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 26(C).
    2. Bravo-Urquiza, Francisco & Moreno-Ureba, Elena, 2021. "Does compliance with corporate governance codes help to mitigate financial distress?," Research in International Business and Finance, Elsevier, vol. 55(C).
    3. Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
    4. Dasgupta, Sudipto & Banerjee, Shantanu & SHI, RUI & Yan, Jiali, 2021. "Information Complementarities and the Dynamics of Transparency Shock Spillovers," CEPR Discussion Papers 15658, C.E.P.R. Discussion Papers.
    5. Khaled Halteh & Kuldeep Kumar & Adrian Gepp, 2018. "Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk," Risks, MDPI, vol. 6(2), pages 1-13, May.
    6. Christian Leuz & Peter D. Wysocki, 2016. "The Economics of Disclosure and Financial Reporting Regulation: Evidence and Suggestions for Future Research," Journal of Accounting Research, Wiley Blackwell, vol. 54(2), pages 525-622, May.
    7. Ha Nguyen, 2023. "Particle MCMC in forecasting frailty correlated default models with expert opinion," Papers 2304.11586, arXiv.org, revised Aug 2023.
    8. Christian Lohmann & Thorsten Ohliger, 2020. "Bankruptcy prediction and the discriminatory power of annual reports: empirical evidence from financially distressed German companies," Journal of Business Economics, Springer, vol. 90(1), pages 137-172, February.
    9. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    10. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    11. Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
    12. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    13. Jie Sun & Jie Li & Hamido Fujita & Wenguo Ai, 2023. "Multiclass financial distress prediction based on one‐versus‐one decomposition integrated with improved decision‐directed acyclic graph," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1167-1186, August.
    14. Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.
    15. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    16. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    17. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    18. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    19. E. Fedorova A. & M. Chukhlantseva A. & D. Chekrizov V. & ЕЛЕНА Федорова АНАТОЛЬЕВНА & МАРИЯ Чухланцева АЛЕКСАНДРОВНА & ДМИТРИЙ Чекризов ВАСИЛЬЕВИЧ, 2017. "Нормативные значения коэффициентов финансовой устойчивости: особенности видов экономической деятельности // Normative Values of Financial Stability Ratios: Industry-Specific Features," Управленческие науки // Management Science, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 7(2), pages 44-55.
    20. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjobre:v:72:y:2020:i:1:d:10.1007_s41471-020-00086-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.