IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v9y2002i3p209-220.html
   My bibliography  Save this article

The impact of cordon design on the performance of road pricing schemes

Author

Listed:
  • May, A. D.
  • Liu, R.
  • Shepherd, S. P.
  • Sumalee, A.

Abstract

Road pricing schemes are principally based on cordon-based pricing. Earlier studies have demonstrated that the performance of cordon schemes is critically dependent on cordon location. However, surveys of those designing such schemes indicate that they are opting for the simplest designs, in the interest of acceptability, and may well be overlooking designs which achieve greater economic benefit. A set of analytical procedures has been developed for identifying the locations for imposing charges and the charges at those points which are optimal in terms of economic efficiency. These are demonstrated on a simplified network of Cambridge. Tests on a larger network confirm that performance is very sensitive to cordon location. However, they also show that charging points selected by even a simple analytical procedure can achieve economic benefits around 50% higher than predefined cordons, and that relaxing the requirement to have uniform charges at all charging points can produce further substantial increases in economic benefits.

Suggested Citation

  • May, A. D. & Liu, R. & Shepherd, S. P. & Sumalee, A., 2002. "The impact of cordon design on the performance of road pricing schemes," Transport Policy, Elsevier, vol. 9(3), pages 209-220, July.
  • Handle: RePEc:eee:trapol:v:9:y:2002:i:3:p:209-220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967-070X(02)00031-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erik T. Verhoef, 2000. "Second-Best Congestion Pricing in General Networks - Algorithms for Finding Second-Best Optimal Toll Levels and Toll Points," Tinbergen Institute Discussion Papers 00-084/3, Tinbergen Institute.
    2. Yang, Hai & Huang, Hai-Jun, 1998. "Principle of marginal-cost pricing: how does it work in a general road network?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 45-54, January.
    3. May, A. D. & Milne, D. S., 2000. "Effects of alternative road pricing systems on network performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(6), pages 407-436, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheu, Jiuh-Biing & Yang, Hai, 2008. "An integrated toll and ramp control methodology for dynamic freeway congestion management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4327-4348.
    2. Verhoef, Erik T., 2002. "Second-best congestion pricing in general static transportation networks with elastic demands," Regional Science and Urban Economics, Elsevier, vol. 32(3), pages 281-310, May.
    3. Lehe, Lewis J., 2017. "Downtown tolls and the distribution of trip lengths," Economics of Transportation, Elsevier, vol. 11, pages 23-32.
    4. Prateek Bansal & Rohan Shah & Stephen D. Boyles, 2018. "Robust network pricing and system optimization under combined long-term stochasticity and elasticity of travel demand," Transportation, Springer, vol. 45(5), pages 1389-1418, September.
    5. Rouhani, Omid M. & Niemeier, Debbie, 2014. "Flat versus spatially variable tolling: A case study in Fresno, California," Journal of Transport Geography, Elsevier, vol. 37(C), pages 10-18.
    6. C. Robin Lindsey & Erik T. Verhoef, 2000. "Traffic Congestion and Congestion Pricing," Tinbergen Institute Discussion Papers 00-101/3, Tinbergen Institute.
    7. Ho, H.W. & Wong, S.C. & Yang, Hai & Loo, Becky P.Y., 2005. "Cordon-based congestion pricing in a continuum traffic equilibrium system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 813-834.
    8. Wichiensin, Muanmas & Bell, Michael G.H. & Yang, Hai, 2007. "Impact of congestion charging on the transit market: An inter-modal equilibrium model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 703-713, August.
    9. Zheng, Nan & Waraich, Rashid A. & Axhausen, Kay W. & Geroliminis, Nikolas, 2012. "A dynamic cordon pricing scheme combining the Macroscopic Fundamental Diagram and an agent-based traffic model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1291-1303.
    10. Zhang, Xiaoning & Yang, Hai, 2004. "The optimal cordon-based network congestion pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 517-537, July.
    11. Erik T. Verhoef, 1998. "An Integrated Dynamic Model of Road Traffic Congestion based on Simple Car-Following Theory," Tinbergen Institute Discussion Papers 98-030/3, Tinbergen Institute.
    12. Mun, Se-il & Konishi, Ko-ji & Yoshikawa, Kazuhiro, 2005. "Optimal cordon pricing in a non-monocentric city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 723-736.
    13. He, Brian Yueshuai & Zhou, Jinkai & Ma, Ziyi & Wang, Ding & Sha, Di & Lee, Mina & Chow, Joseph Y.J. & Ozbay, Kaan, 2021. "A validated multi-agent simulation test bed to evaluate congestion pricing policies on population segments by time-of-day in New York City," Transport Policy, Elsevier, vol. 101(C), pages 145-161.
    14. Ian W.H. Parry, 2009. "Pricing Urban Congestion," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 461-484, September.
    15. Safirova, Elena & Gillingham, Kenneth & Houde, Sébastien, 2007. "Measuring marginal congestion costs of urban transportation: Do networks matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 734-749, October.
    16. Rouhani, Omid M. & Knittel, Christopher R. & Niemeier, Debbie, 2014. "Road Supply in Central London: Addition of an Ignored Social Cost," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(1).
    17. Ferrari, Paolo, 2010. "Willingness to spend and road pricing rates," Transport Policy, Elsevier, vol. 17(3), pages 160-172, May.
    18. Sen Li & Kameshwar Poolla & Pravin Varaiya, 2020. "Impact of Congestion Charge and Minimum Wage on TNCs: A Case Study for San Francisco," Papers 2003.02550, arXiv.org, revised Feb 2021.
    19. Bertini, Robert L & Rufolo, Anthony M, 2004. "Technology Considerations For The Implementation Of A Statewide Road User Fee System," Research in Transportation Economics, Elsevier, vol. 8(1), pages 337-361, January.
    20. Yang, Hai & Meng, Qiang, 1998. "Departure time, route choice and congestion toll in a queuing network with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 247-260, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:9:y:2002:i:3:p:209-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.