IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v171y2025icp1025-1040.html

Urban air mobility for airport access: Mode choice preferences and pricing considerations

Author

Listed:
  • Adamidis, Filippos
  • Ditta, Chiara Caterina
  • Wu, Hao
  • Postorino, Maria Nadia
  • Antoniou, Constantinos

Abstract

The increasing use of commercial aviation in the last decades has urged us to reconsider landside airport accessibility to meet the evolving demand. At the same time, the third (vertical) dimension in urban and suburban areas – i.e. the lower airspace up to 500 m above the ground – has yet to be substantially exploited for transportation. Soon, technological advances in electric vertical take-off and landing (eVTOL) aircraft could enable the commercial use of Urban Air Mobility (UAM) for airport access. Through a case study in Bavaria, Germany, and Austria, this research aims to investigate the potential users’ willingness to pay for a novel UAM AirShuttle service, which could connect the airport of Munich with important points in its catchment area, and to analyse their transportation mode choices when accessing the airport. A stated preference mode choice survey was disseminated through an online panel during March 2023 in the catchment area of the airport to assess the current travel behaviour of the population, including the ownership of mobility instruments, the current state of airport accessibility and the satisfaction of the respondents (N=218) with the currently available modes. Furthermore, the survey investigated directly how much the respondents were willing to pay to use the AirShuttle and their sociodemographic background. The results were evaluated using descriptive statistical analyses and discrete choice modelling. The findings reveal that most respondents were satisfied with the current access modes and found their pricing reasonable. On the other hand, their willingness to pay for UAM services was lower than expected. This study yields important implications for the industrial stakeholders of UAM and for policymakers; by analysing the results, it was concluded that the expectations of the industry and potential customers regarding UAM pricing in the short term could be different and that its benefits and implications for society should be carefully weighed by policymakers.

Suggested Citation

  • Adamidis, Filippos & Ditta, Chiara Caterina & Wu, Hao & Postorino, Maria Nadia & Antoniou, Constantinos, 2025. "Urban air mobility for airport access: Mode choice preferences and pricing considerations," Transport Policy, Elsevier, vol. 171(C), pages 1025-1040.
  • Handle: RePEc:eee:trapol:v:171:y:2025:i:c:p:1025-1040
    DOI: 10.1016/j.tranpol.2025.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X2500280X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2025.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shaheen, Susan PhD & Cohen, Adam & Farrar, Emily, 2018. "The Potential Societal Barriers of Urban Air Mobility (UAM)," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7p69d2bg, Institute of Transportation Studies, UC Berkeley.
    2. Rimjha, Mihir & Hotle, Susan & Trani, Antonio & Hinze, Nicolas, 2021. "Commuter demand estimation and feasibility assessment for Urban Air Mobility in Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 506-524.
    3. Karami, Hossein & Abbasi, Mohammadhossein & Samadzad, Mahdi & Karami, Ali, 2024. "Unraveling behavioral factors influencing the adoption of urban air mobility from the end user's perspective in Tehran – A developing country outlook," Transport Policy, Elsevier, vol. 145(C), pages 74-84.
    4. Hae Choi, Jong & Park, Yonghwa, 2022. "Exploring economic feasibility for airport shuttle service of urban air mobility (UAM)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 267-281.
    5. Ahmed, Sheikh Shahriar & Fountas, Grigorios & Eker, Ugur & Still, Stephen E. & Anastasopoulos, Panagiotis Ch, 2021. "An exploratory empirical analysis of willingness to hire and pay for flying taxis and shared flying car services," Journal of Air Transport Management, Elsevier, vol. 90(C).
    6. Goyal, Rohit & Reiche, Colleen & Fernando, Chris & Cohen, Adam, 2021. "Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4b3998tw, Institute of Transportation Studies, UC Berkeley.
    7. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "SP surveys to estimate Airport Shuttle demand in an Urban Air Mobility context," Transport Policy, Elsevier, vol. 141(C), pages 129-139.
    8. Straubinger, Anna & Rothfeld, Raoul & Shamiyeh, Michael & Büchter, Kai-Daniel & Kaiser, Jochen & Plötner, Kay Olaf, 2020. "An overview of current research and developments in urban air mobility – Setting the scene for UAM introduction," Journal of Air Transport Management, Elsevier, vol. 87(C).
    9. Hensher, David A. & Rose, John M. & Greene, William H., 2008. "Combining RP and SP data: biases in using the nested logit ‘trick’ – contrasts with flexible mixed logit incorporating panel and scale effects," Journal of Transport Geography, Elsevier, vol. 16(2), pages 126-133.
    10. Rothfeld, Raoul & Straubinger, Anna & Paul, Annika & Antoniou, Constantinos, 2019. "Analysis of European airports’ access and egress travel times using Google Maps," Transport Policy, Elsevier, vol. 81(C), pages 148-162.
    11. Jiyoon Park & Solhee Kim & Kyo Suh, 2018. "A Comparative Analysis of the Environmental Benefits of Drone-Based Delivery Services in Urban and Rural Areas," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    12. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, January.
    13. Rohit Goyal & Colleen Reiche & Chris Fernando & Adam Cohen, 2021. "Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets," Sustainability, MDPI, vol. 13(13), pages 1-15, July.
    14. Reiche, Colleen PhD & Brody, Frank & McGillen, Christian & Siegel, Joel & Cohen, Adam, 2018. "An Assessment of the Potential Weather Barriers of Urban Air Mobility (UAM)," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2pc8b4wt, Institute of Transportation Studies, UC Berkeley.
    15. Raoul Rothfeld & Mengying Fu & Miloš Balać & Constantinos Antoniou, 2021. "Potential Urban Air Mobility Travel Time Savings: An Exploratory Analysis of Munich, Paris, and San Francisco," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    16. repec:osf:metaar:mbx62_v1 is not listed on IDEAS
    17. Reece A. Clothier & Dominique A. Greer & Duncan G. Greer & Amisha M. Mehta, 2015. "Risk Perception and the Public Acceptance of Drones," Risk Analysis, John Wiley & Sons, vol. 35(6), pages 1167-1183, June.
    18. Newall, Philip W.S. & Walasek, Lukasz & Hassanniakalager, Arman & Russell, Alex M.T. & Ludvig, Elliot A. & Browne, Matthew, 2023. "Statistical risk warnings in gambling," Behavioural Public Policy, Cambridge University Press, vol. 7(2), pages 219-239, April.
    19. Joan L. Walker & Yanqiao Wang & Mikkel Thorhauge & Moshe Ben-Akiva, 2018. "D-efficient or deficient? A robustness analysis of stated choice experimental designs," Theory and Decision, Springer, vol. 84(2), pages 215-238, March.
    20. Sun, Xiaoqian & Wandelt, Sebastian & Stumpf, Eike, 2018. "Competitiveness of on-demand air taxis regarding door-to-door travel time: A race through Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 1-18.
    21. Coppola, Pierluigi & De Fabiis, Francesco & Silvestri, Fulvio, 2024. "Urban Air Mobility (UAM): Airport shuttles or city-taxis?," Transport Policy, Elsevier, vol. 150(C), pages 24-34.
    22. Al Haddad, Christelle & Chaniotakis, Emmanouil & Straubinger, Anna & Plötner, Kay & Antoniou, Constantinos, 2020. "Factors affecting the adoption and use of urban air mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 696-712.
    23. Chiara Caterina Ditta & Maria Nadia Postorino, 2023. "Three-Dimensional Urban Air Networks for Future Urban Air Transport Systems," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    24. Cohen, Adam P & Shaheen, Susan A PhD & Farrar, Emily M, 2021. "Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8nh0s83q, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Tao & Wu, Hao & Lu, Qing-Long & Antoniou, Constantinos, 2025. "Planning UAM network under uncertain travelers’ preferences: A sequential two-layer stochastic optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ying & Hu, Yan & Feng, Tao & Zhang, Anming, 2025. "Assessment of passengers’ safety and risk attitudes on integrated urban air mobility and airline services," Transport Policy, Elsevier, vol. 172(C).
    2. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "SP surveys to estimate Airport Shuttle demand in an Urban Air Mobility context," Transport Policy, Elsevier, vol. 141(C), pages 129-139.
    3. Shon, Heeseung & Lee, Jinwoo, 2025. "An optimization framework for urban air mobility (UAM) planning and operations," Journal of Air Transport Management, Elsevier, vol. 124(C).
    4. Garrow, Laurie A. & Mokhtarian, Patricia L. & German, Brian J. & “Jack” S. Glodek, John & Leonard, Caroline E., 2025. "Market segmentation of an electric vertical takeoff and landing (eVTOL) air taxi commuting service in five large U.S. cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    5. Sadrani, Mohammad & Adamidis, Filippos & Garrow, Laurie A. & Antoniou, Constantinos, 2025. "Challenges in urban air mobility implementation: A comparative analysis of barriers in Germany and the United States," Journal of Air Transport Management, Elsevier, vol. 126(C).
    6. Lee, Changju & Bae, Bumjoon & Lee, Yu Lim & Pak, Tae-Young, 2023. "Societal acceptance of urban air mobility based on the technology adoption framework," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    7. Jiang, Yu & Li, Zhichao & Wang, Yasha & Xue, Qingwen, 2025. "Vertiport location for eVTOL considering multidimensional demand of urban air mobility: An application in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    8. Coppola, Pierluigi & De Fabiis, Francesco & Silvestri, Fulvio, 2024. "Urban Air Mobility (UAM): Airport shuttles or city-taxis?," Transport Policy, Elsevier, vol. 150(C), pages 24-34.
    9. Samadzad, Mahdi & Ansari, Fatemeh & Afshari Moez, Mohammad Amin, 2024. "Who will board urban air taxis? An analysis of advanced air mobility demand and value of travel time for business, airport access, and regional tourism trips in Iran," Journal of Air Transport Management, Elsevier, vol. 119(C).
    10. Lv, Di & Zhang, Wei & Wang, Kai & Hao, Han & Yang, Ying, 2024. "Urban Aerial Mobility for airport shuttle service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
    11. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    12. Ariza-Montes, Antonio & Quan, Wei & Radic, Aleksandar & Koo, Bonhak & Kim, Jinkyung Jenny & Chua, Bee-Lia & Han, Heesup, 2023. "Understanding the behavioral intention to use urban air autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    13. Long, Qi & Ma, Jun & Jiang, Feifeng & Webster, Christopher John, 2023. "Demand analysis in urban air mobility: A literature review," Journal of Air Transport Management, Elsevier, vol. 112(C).
    14. Annitsa Koumoutsidi & Ioanna Pagoni & Amalia Polydoropoulou, 2022. "A New Mobility Era: Stakeholders’ Insights regarding Urban Air Mobility," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    15. Hijazeen, Salim & King-Yin Cheung, Tommy & Lei, Zheng & Hayward, Jennifer A., 2025. "Integrating vertiports into Australian airports - A comparative literature review of regulatory frameworks from CASA, FAA, and EASA," Transport Policy, Elsevier, vol. 172(C).
    16. Zhao, Ying & Feng, Tao, 2025. "Commuter choice of UAM-friendly neighborhoods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    17. Boddupalli, Sreekar-Shashank & Garrow, Laurie A. & German, Brian J. & Newman, Jeffrey P., 2024. "Mode choice modeling for an electric vertical takeoff and landing (eVTOL) air taxi commuting service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    18. Xu, Ningzhe & Pena-Bastidas, Javier & Yang, Chenxuan & Liu, Jun & Hockstad, Trayce & Jones, Steven, 2025. "Urban and regional Air Mobility (URAM) and relocation decisions in the United States: Insights from a machine learning-supported path analysis," Transport Policy, Elsevier, vol. 170(C), pages 92-109.
    19. Jang, Hyeokjun & Kwon, Yeongmin & Jang, Kitae & Kim, Suji, 2025. "Urban air mobility for airport access: Mode choice preference associated with socioeconomic status and airport usage behavior," Journal of Air Transport Management, Elsevier, vol. 124(C).
    20. Rath, Srushti & Chow, Joseph Y.J., 2022. "Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access," Journal of Air Transport Management, Elsevier, vol. 105(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:171:y:2025:i:c:p:1025-1040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.