IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v84y2015icp73-87.html
   My bibliography  Save this article

Optimal allocation of protective resources in urban rail transit networks against intentional attacks

Author

Listed:
  • Jin, Jian Gang
  • Lu, Linjun
  • Sun, Lijun
  • Yin, Jingbo

Abstract

This paper advances the field of network interdiction analysis by introducing an application to the urban rail transit network, deploying protective resources against intentional attacks. The resource allocation problem for urban rail transit systems is considered as a game between two players, the attacker interdicting certain rail stations to generate greatest disruption impact and the system defender fortifying the network to maximize the system’s robustness to external interdictions. This paper introduces a game-theoretic approach for enhancing urban transit networks’ robustness to intentional disruptions via optimally allocating protection resources. A tri-level defender–attacker–user game-theoretic model is developed to allocate protective resources among rail stations in the rail transit network. This paper is distinguished with previous studies in that more sophisticated interdiction behaviors by the attacker, such as coordinated attack on multiple locations and various attacking intensities, are specifically considered. Besides, a more complex multi-commodity network flow model is employed to model the commuter travel pattern in the degraded rail network after interdiction. An effective nested variable neighborhood search method is devised to obtain the solution to the game in an efficient manner. A case study based on the Singapore rail transit system and actual travel demand data is finally carried out to assess the protective resources’ effectiveness against intentional attacks.

Suggested Citation

  • Jin, Jian Gang & Lu, Linjun & Sun, Lijun & Yin, Jingbo, 2015. "Optimal allocation of protective resources in urban rail transit networks against intentional attacks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 73-87.
  • Handle: RePEc:eee:transe:v:84:y:2015:i:c:p:73-87
    DOI: 10.1016/j.tre.2015.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554515002008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2015.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    2. Paola Cappanera & Maria Paola Scaparra, 2011. "Optimal Allocation of Protective Resources in Shortest-Path Networks," Transportation Science, INFORMS, vol. 45(1), pages 64-80, February.
    3. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    4. Perea, Federico & Puerto, Justo, 2013. "Revisiting a game theoretic framework for the robust railway network design against intentional attacks," European Journal of Operational Research, Elsevier, vol. 226(2), pages 286-292.
    5. Laporte, Gilbert & Mesa, Juan A. & Perea, Federico, 2010. "A game theoretic framework for the robust railway transit network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 447-459, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Jinpeng & Wu, Jianjun & Qu, Yunchao & Yin, Haodong & Qu, Xiaobo & Gao, Ziyou, 2019. "Robust bus bridging service design under rail transit system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 97-116.
    2. Annunziata Esposito Amideo & Stefano Starita & Maria Paola Scaparra, 2019. "Assessing Protection Strategies for Urban Rail Transit Systems: A Case-Study on the Central London Underground," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    3. Stefano Starita & M. Paola Scaparra & Jesse R. O’Hanley, 2017. "A dynamic model for road protection against flooding," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 74-88, January.
    4. Karakose, Gokhan & McGarvey, Ronald G., 2018. "Capacitated path-aggregation constraint model for arc disruption in networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 225-238.
    5. Wu, Yipeng & Chen, Zhilong & Dang, Junhu & Chen, Yicun & Zhao, Xudong & Zha, Lvying, 2022. "Allocation of defensive and restorative resources in electric power system against consecutive multi-target attacks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Kuttler, Emma & Ghorbani-Renani, Nafiseh & Barker, Kash & González, Andrés D. & Johansson, Jonas, 2024. "Protection-interdiction-restoration for resilient multi-commodity networks," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Wen Hua & Ghim Ping Ong, 2018. "Effect of information contagion during train service disruption for an integrated rail-bus transit system," Public Transport, Springer, vol. 10(3), pages 571-594, December.
    9. Zhang, Jianhua & Wang, Meng, 2019. "Transportation functionality vulnerability of urban rail transit networks based on movingblock: The case of Nanjing metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Wu, Yipeng & Chen, Zhilong & Gong, Huadong & Feng, Qilin & Chen, Yicun & Tang, Haizhou, 2021. "Defender–attacker–operator: Tri-level game-theoretic interdiction analysis of urban water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    12. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    13. Xiao Feng & Shiwei He & Xuchao Chen & Guangye Li, 2021. "Mitigating the vulnerability of an air-high-speed railway transportation network: From the perspective of predisruption response," Journal of Risk and Reliability, , vol. 235(3), pages 474-490, June.
    14. Jiang, J. & Liu, X., 2018. "Multi-objective Stackelberg game model for water supply networks against interdictions with incomplete information," European Journal of Operational Research, Elsevier, vol. 266(3), pages 920-933.
    15. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    16. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    2. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    3. Rosenthal, Edward C., 2017. "A cooperative game approach to cost allocation in a rapid-transit network," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 64-77.
    4. Perea, Federico & Puerto, Justo, 2013. "Revisiting a game theoretic framework for the robust railway network design against intentional attacks," European Journal of Operational Research, Elsevier, vol. 226(2), pages 286-292.
    5. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    6. Hadas, Yuval & Gnecco, Giorgio & Sanguineti, Marcello, 2017. "An approach to transportation network analysis via transferable utility games," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 120-143.
    7. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    8. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    9. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    10. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    11. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    12. Karakose, Gokhan & McGarvey, Ronald G., 2018. "Capacitated path-aggregation constraint model for arc disruption in networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 225-238.
    13. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    14. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    15. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Yajuan Deng & Xiaolei Ru & Ziqi Dou & Guohua Liang, 2018. "Design of Bus Bridging Routes in Response to Disruption of Urban Rail Transit," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    17. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    18. Qiang Tu & Han He & Xiaomin Lai & Chuan Jiang & Zhanji Zheng, 2024. "Identifying Critical Links in Degradable Road Networks Using a Traffic Demand-Based Indicator," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    19. Szeto, W.Y. & Farahani, R.Z. & Sumalee, Agachai, 2017. "Link-based multi-class hazmat routing-scheduling problem: A multiple demon approach," European Journal of Operational Research, Elsevier, vol. 261(1), pages 337-354.
    20. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:84:y:2015:i:c:p:73-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.