IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v198y2025ics1366554525001450.html
   My bibliography  Save this article

An intelligent hyperheuristic algorithm for the berth allocation and scheduling problem at marine container terminals

Author

Listed:
  • Li, Bokang
  • Afkhami, Payam
  • Khayamim, Razieh
  • Borowska-Stefańska, Marta
  • Wiśniewski, Szymon
  • Fathollahi-Fard, Amir M.
  • Ozkul, Seckin
  • Dulebenets, Maxim A.

Abstract

Berth allocation and scheduling at marine container terminals holds critical significance for optimizing port operations and ensuring efficient maritime logistics, yet it is exceptionally challenging due to its operational complexity and practical constraints. This study presents a mixed-integer linear programming model for the dynamic discrete berth allocation and scheduling problem with the objective to minimize the total turnaround cost and develop an efficient service schedule for each incoming vessel with a feasible service order and berthing position. A novel Hyperheuristic Hybridized with Exact Optimization (HHEO) is developed to explicitly solve the challenging decision problem studied herein. The HHEO algorithm is designed to dynamically select and apply different genetic operators based on their actual performance. Furthermore, intelligent exact optimization procedures specific to the domain of berth allocation and scheduling are periodically employed within the HHEO framework to improve solution quality and facilitate search for high-quality solutions. Detailed computational experiments are carried out to prove the superiority of the HHEO algorithm against solution methods inspired by exact optimization along with some well-known metaheuristic algorithms, demonstrating its efficiency and applicability for real-life berth planning at marine container terminals. Moreover, the experiments clearly demonstrate that incorporating a hyperheuristic framework along with problem-specific hybridization methods is critical for improving the exploratory and exploitative capabilities of the developed HHEO algorithm. Last but not least, valuable practical insights are uncovered through the proposed approach, offering reliable solutions that can support effective port management under different scenarios of berthing availability, vessel arrival intensity, and delayed vessel departure penalties.

Suggested Citation

  • Li, Bokang & Afkhami, Payam & Khayamim, Razieh & Borowska-Stefańska, Marta & Wiśniewski, Szymon & Fathollahi-Fard, Amir M. & Ozkul, Seckin & Dulebenets, Maxim A., 2025. "An intelligent hyperheuristic algorithm for the berth allocation and scheduling problem at marine container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:transe:v:198:y:2025:i:c:s1366554525001450
    DOI: 10.1016/j.tre.2025.104104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525001450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cai-Juan Soong & Rosshairy Abd Rahman & Razamin Ramli & Mohammed Suhaimee Abd Manaf & Chek-Choon Ting & Mojtaba Ahmadieh Khanesar, 2022. "An Evolutionary Algorithm: An Enhancement of Binary Tournament Selection for Fish Feed Formulation," Complexity, Hindawi, vol. 2022, pages 1-15, November.
    2. Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
    3. Martin-Iradi, Bernardo & Pacino, Dario & Ropke, Stefan, 2024. "An adaptive large neighborhood search heuristic for the multi-port continuous berth allocation problem," European Journal of Operational Research, Elsevier, vol. 316(1), pages 152-167.
    4. Tatsushi Nishi & Tatsuya Okura & Eduardo Lalla-Ruiz & Stefan Voß, 2020. "A dynamic programming-based matheuristic for the dynamic berth allocation problem," Annals of Operations Research, Springer, vol. 286(1), pages 391-410, March.
    5. Shu-Chuan Chang & Ming-Hua Lin & Jung-Fa Tsai, 2024. "An Optimization Approach to Berth Allocation Problems," Mathematics, MDPI, vol. 12(5), pages 1-16, March.
    6. Lu Zhen & Qian Sun & Wei Zhang & Kai Wang & Wen Yi, 2021. "Column generation for low carbon berth allocation under uncertainty," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2225-2240, October.
    7. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    8. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    9. Zhen, Lu & He, Xueting & Zhuge, Dan & Wang, Shuaian, 2024. "Primal decomposition for berth planning under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    10. Neamatian Monemi, Rahimeh & Gelareh, Shahin & Maculan, Nelson, 2023. "A machine learning based branch-cut-and-Benders for dock assignment and truck scheduling problem in cross-docks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    11. Shen, Liang & Xu, Xiang & Shao, Feng & Shao, Hu & Ge, Yanxin, 2024. "A multi-objective optimization model for medical waste recycling network design under uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    12. Julian Martinez-Moya & Thierry Vanelslander & María Feo-Valero & Ramón Sala-Garrido, 2025. "Evaluating container terminal competitiveness in the Hamburg – Le Havre range," Maritime Business Review, Emerald Group Publishing Limited, vol. 10(2), pages 149-165, February.
    13. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2013. "Marine container terminal configurations for efficient handling of mega-containerships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 141-158.
    14. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
    15. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    16. Yuquan Du & Qiushuang Chen & Jasmine Siu Lee Lam & Ya Xu & Jin Xin Cao, 2015. "Modeling the Impacts of Tides and the Virtual Arrival Policy in Berth Allocation," Transportation Science, INFORMS, vol. 49(4), pages 939-956, November.
    17. Fernández, Elena & Munoz-Marquez, Manuel, 2022. "New formulations and solutions for the strategic berth template problem," European Journal of Operational Research, Elsevier, vol. 298(1), pages 99-117.
    18. Mosadegh, H. & Fatemi Ghomi, S.M.T. & Süer, G.A., 2020. "Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 282(2), pages 530-544.
    19. Stefania Kollia & Athanasios A. Pallis, 2024. "Competition effects of vertical integration in container ports: assessing the European Commission decisional practice," Maritime Business Review, Emerald Group Publishing Limited, vol. 9(1), pages 74-94, January.
    20. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    21. Assadipour, Ghazal & Ke, Ginger Y. & Verma, Manish, 2015. "Planning and managing intermodal transportation of hazardous materials with capacity selection and congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 45-57.
    22. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    23. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2003. "Berth allocation with service priority," Transportation Research Part B: Methodological, Elsevier, vol. 37(5), pages 437-457, June.
    24. Zhang, Yilun & Liu, Sicheng & Jiang, Zhibin & Xing, Xinjie & Wang, Jiguang, 2024. "Joint optimization of product service system configuration and delivery with learning-based valid cut selection and a tailored heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    25. Guo, Yuhan & Li, Jinning & Xiao, Linfan & Allaoui, Hamid & Choudhary, Alok & Zhang, Lufang, 2024. "Efficient inventory routing for Bike-Sharing Systems: A combinatorial reinforcement learning framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    26. Han, Xiao-le & Lu, Zhi-qiang & Xi, Li-feng, 2010. "A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1327-1340, December.
    27. Seçil Gülmez & Gül Denktaş Şakar & Sedat Baştuğ, 2023. "An overview of maritime logistics: trends and research agenda," Maritime Policy & Management, Taylor & Francis Journals, vol. 50(1), pages 97-116, January.
    28. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    29. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    30. Bottasso, Anna & Conti, Maurizio & de Sa Porto, Paulo Costacurta & Ferrari, Claudio & Tei, Alessio, 2018. "Port infrastructures and trade: Empirical evidence from Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 126-139.
    31. Zhen, Lu & Wang, Wencheng & Lin, Shumin & Yang, Linying & Jiang, Shenyan, 2025. "Joint berth and flexible storage space allocation in container tower ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiafei Xie & Bin Ji & Samson S. Yu, 2025. "A Variable Neighborhood Search Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Sustainability, MDPI, vol. 17(9), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoqi Xie & Daniela Ambrosino, 2025. "Operations Research, Machine Learning, and Integrated Techniques for Decision Problems in the Seaside Area of Container Terminals," SN Operations Research Forum, Springer, vol. 6(2), pages 1-51, June.
    2. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    3. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    4. Liu, Baoli & Wang, Xincheng & Wang, Zehao & Zheng, Jianfeng & Sheng, Dian, 2025. "Modeling and solving the joint berth allocation and vessel sequencing problem with speed optimization in a busy seaport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
    5. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    6. Guo, Liming & Zheng, Jianfeng & Du, Jian & Gao, Ziyou & Fagerholt, Kjetil, 2024. "Integrated planning of berth allocation, quay crane assignment and yard assignment in multiple cooperative terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    7. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    8. Shaojian Qu & Xinqi Li & Chang Liu & Xufeng Tang & Zhisheng Peng & Ying Ji, 2023. "Two-Stage Robust Programming Modeling for Continuous Berth Allocation with Uncertain Vessel Arrival Time," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    9. Berktas, Nihal & Zografos, Konstantinos G., 2025. "Generic model for capacity allocation on transportation terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    10. Fernández, Elena & Munoz-Marquez, Manuel, 2022. "New formulations and solutions for the strategic berth template problem," European Journal of Operational Research, Elsevier, vol. 298(1), pages 99-117.
    11. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    12. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    13. Hsien-Pin Hsu & Tai-Lin Chiang & Chia-Nan Wang & Hsin-Pin Fu & Chien-Chang Chou, 2019. "A Hybrid GA with Variable Quay Crane Assignment for Solving Berth Allocation Problem and Quay Crane Assignment Problem Simultaneously," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    14. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    15. Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    16. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    17. Changchun Liu & Xi Xiang & Canrong Zhang & Li Zheng, 2016. "A Decision Model for Berth Allocation Under Uncertainty Considering Service Level Using an Adaptive Differential Evolution Algorithm," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-28, December.
    18. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong & Sheng, Dian, 2021. "Short-term berth planning and ship scheduling for a busy seaport with channel restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    19. Jaap-Jan Steeg & Menno Oudshoorn & Neil Yorke-Smith, 2023. "Berth planning and real-time disruption recovery: a simulation study for a tidal port," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 70-110, March.
    20. Qin, Tianbao & Du, Yuquan & Sha, Mei, 2016. "Evaluating the solution performance of IP and CP for berth allocation with time-varying water depth," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 167-185.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:198:y:2025:i:c:s1366554525001450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.