IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v194y2025ics1366554524005337.html
   My bibliography  Save this article

Joint berth and flexible storage space allocation in container tower ports

Author

Listed:
  • Zhen, Lu
  • Wang, Wencheng
  • Lin, Shumin
  • Yang, Linying
  • Jiang, Shenyan

Abstract

The increasing demand for container shipping has increased the difficulty of yard management and container processing time. High-density container tower ports are next-generation ports. They have advantages, such as stable steel frame structures, high yard land utilization rates, and eliminating the need for container reshuffling operations. This study investigates berth and storage space allocation in container tower ports by considering flexible storage strategies, container allocation, sub-tower size division, and sub-tower allocation. A mixed-integer programming model is proposed to characterize the problem. A column generation-based heuristic algorithm with high performance in terms of solving speed and quality is explored to solve this problem. Numerical experiments verify the performance of the proposed algorithm. Some management insights that can help ports operate efficiently are revealed.

Suggested Citation

  • Zhen, Lu & Wang, Wencheng & Lin, Shumin & Yang, Linying & Jiang, Shenyan, 2025. "Joint berth and flexible storage space allocation in container tower ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005337
    DOI: 10.1016/j.tre.2024.103942
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524005337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Zhen, Lu & Wang, Wencheng & Lin, Shumin, 2022. "Analytical comparison on two incentive policies for shore power equipped ships in berthing activities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    3. Tatsushi Nishi & Tatsuya Okura & Eduardo Lalla-Ruiz & Stefan Voß, 2020. "A dynamic programming-based matheuristic for the dynamic berth allocation problem," Annals of Operations Research, Springer, vol. 286(1), pages 391-410, March.
    4. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    5. Chenhao Zhou & Qitong Zhao & Haobin Li, 2021. "Simulation optimization iteration approach on traffic integrated yard allocation problem in transshipment terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 663-688, September.
    6. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    7. Jin, Jian Gang & Lee, Der-Horng & Hu, Hao, 2015. "Tactical berth and yard template design at container transshipment terminals: A column generation based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 168-184.
    8. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    9. Zhou, Chenhao & Wang, Wencheng & Li, Haobin, 2020. "Container reshuffling considered space allocation problem in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    10. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    11. Yu, Jingjing & Tang, Guolei & Voß, Stefan & Song, Xiangqun, 2023. "Berth allocation and quay crane assignment considering the adoption of different green technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    12. Arijit De & Saurabh Pratap & Akhilesh Kumar & M. K. Tiwari, 2020. "A hybrid dynamic berth allocation planning problem with fuel costs considerations for container terminal port using chemical reaction optimization approach," Annals of Operations Research, Springer, vol. 290(1), pages 783-811, July.
    13. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    14. Nima Zaerpour & Amir Gharehgozli & René De Koster, 2019. "Vertical Expansion: A Solution for Future Container Terminals," Transportation Science, INFORMS, vol. 53(5), pages 1235-1251, September.
    15. Liu, Ming & Lee, Chung-Yee & Zhang, Zizhen & Chu, Chengbin, 2016. "Bi-objective optimization for the container terminal integrated planning," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 720-749.
    16. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    17. Jiang, Xin Jia & Yang, Xiao Ming, 2023. "A column generation approach for the crane scheduling with sidekick in a perpendicular automated yard block," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    18. Chen, Lu & Lu, Zhiqiang, 2012. "The storage location assignment problem for outbound containers in a maritime terminal," International Journal of Production Economics, Elsevier, vol. 135(1), pages 73-80.
    19. Jiang, Xinjia & Lee, Loo Hay & Chew, Ek Peng & Han, Yongbin & Tan, Kok Choon, 2012. "A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port," European Journal of Operational Research, Elsevier, vol. 221(1), pages 64-73.
    20. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Liming & Zheng, Jianfeng & Du, Jian & Gao, Ziyou & Fagerholt, Kjetil, 2024. "Integrated planning of berth allocation, quay crane assignment and yard assignment in multiple cooperative terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    2. Wang, Mengyao & Zhou, Chenhao & Wang, Aihu, 2022. "A cluster-based yard template design integrated with yard crane deployment using a placement heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    3. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    4. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    5. Haoqi Xie & Daniela Ambrosino, 2025. "Operations Research, Machine Learning, and Integrated Techniques for Decision Problems in the Seaside Area of Container Terminals," SN Operations Research Forum, Springer, vol. 6(2), pages 1-51, June.
    6. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    7. Yang, Lingyi & Ng, Tsan Sheng & Lee, Loo Hay, 2022. "A robust approximation for yard template optimization under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 21-53.
    8. Zhen, Lu & He, Xueting & Zhuge, Dan & Wang, Shuaian, 2024. "Primal decomposition for berth planning under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    9. Jiang, Xin Jia & Jin, Jian Gang, 2017. "A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 62-75.
    10. Zhou, Chenhao & Wang, Wencheng & Li, Haobin, 2020. "Container reshuffling considered space allocation problem in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    11. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    12. Bouzekri, Hamza & Bara, Najat & Alpan, Gülgün & Giard, Vincent, 2022. "An integrated Decision Support System for planning production, storage and bulk port operations in a fertilizer supply chain," International Journal of Production Economics, Elsevier, vol. 252(C).
    13. Xiang, Xi & Liu, Changchun, 2021. "An almost robust optimization model for integrated berth allocation and quay crane assignment problem," Omega, Elsevier, vol. 104(C).
    14. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    15. Tao, Yi & Lee, Chung-Yee, 2015. "Joint planning of berth and yard allocation in transshipment terminals using multi-cluster stacking strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 34-50.
    16. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    17. Chenhao Zhou & Ek Peng Chew & Loo Hay Lee, 2018. "Information-Based Allocation Strategy for GRID-Based Transshipment Automated Container Terminal," Transportation Science, INFORMS, vol. 52(3), pages 707-721, June.
    18. Fang Yu & Chun Zhang & Haiqing Yao & Yongsheng Yang, 2024. "Coordinated scheduling problems for sustainable production of container terminals: a literature review," Annals of Operations Research, Springer, vol. 332(1), pages 1013-1034, January.
    19. Matthew E. H. Petering & Yong Wu & Wenkai Li & Mark Goh & Robert Souza & Katta G. Murty, 2017. "Real-time container storage location assignment at a seaport container transshipment terminal: dispersion levels, yard templates, and sensitivity analyses," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 369-402, December.
    20. Hang Yu & Mingzhong Huang & Leijie Zhang & Caimao Tan, 2024. "Yard template generation for automated container terminal based on bay sharing strategy," Annals of Operations Research, Springer, vol. 343(3), pages 1157-1175, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.