IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p4022-d1645955.html
   My bibliography  Save this article

A Variable Neighborhood Search Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem

Author

Listed:
  • Xiafei Xie

    (School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China)

  • Bin Ji

    (School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China)

  • Samson S. Yu

    (School of Engineering, Deakin University, Melbourne, VIC 31125, Australia)

Abstract

To improve the utilization of port resources and reduce the consumption of resources due to vessel waiting and delays, this paper investigates the Berth Allocation and Quay Crane Assignment Problem (BACAP) in container ports, focusing on the Quay Crane (QC) profile. The objective is to assign berths, berthing times, and QC profiles to vessels arriving at the port within a given planning horizon, thereby extending the traditional BACAP framework. To minimize the sum of idle time costs caused by vessel waiting and delay time costs due to late vessel departures, a mixed-integer linear programming (MILP) model is proposed. Additionally, a variable neighborhood search (VNS) algorithm is designed to solve the model, tailored to the specific characteristics of the problem. The proposed MILP model and VNS algorithm are evaluated using two sets of BACAP instances. The numerical results demonstrate the effectiveness of both the model and the algorithm, showing that VNS efficiently and reliably solves instances of various sizes. Furthermore, each neighborhood structure contributes uniquely to the iterative process. This study also analyzes the impact of different idle and delay costs on BACAP, providing valuable managerial insights. The proposed framework contributes to enhancing operational efficiency and supports sustainable port management.

Suggested Citation

  • Xiafei Xie & Bin Ji & Samson S. Yu, 2025. "A Variable Neighborhood Search Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Sustainability, MDPI, vol. 17(9), pages 1-29, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:4022-:d:1645955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/4022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/4022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    2. Türkoğulları, Yavuz B. & Taşkın, Z. Caner & Aras, Necati & Altınel, İ. Kuban, 2016. "Optimal berth allocation, time-variant quay crane assignment and scheduling with crane setups in container terminals," European Journal of Operational Research, Elsevier, vol. 254(3), pages 985-1001.
    3. Türkoğulları, Yavuz B. & Taşkın, Z. Caner & Aras, Necati & Altınel, İ. Kuban, 2014. "Optimal berth allocation and time-invariant quay crane assignment in container terminals," European Journal of Operational Research, Elsevier, vol. 235(1), pages 88-101.
    4. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    5. Wagner, Stefan & Mönch, Lars, 2023. "A variable neighborhood search approach to solve the order batching problem with heterogeneous pick devices," European Journal of Operational Research, Elsevier, vol. 304(2), pages 461-475.
    6. Meisel, Frank & Bierwirth, Christian, 2009. "Heuristics for the integration of crane productivity in the berth allocation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 196-209, January.
    7. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    8. Xiang, Xi & Liu, Changchun, 2021. "An almost robust optimization model for integrated berth allocation and quay crane assignment problem," Omega, Elsevier, vol. 104(C).
    9. Wang, Tingsong & Wang, Xinchang & Meng, Qiang, 2018. "Joint berth allocation and quay crane assignment under different carbon taxation policies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 18-36.
    10. Correcher, Juan F. & Alvarez-Valdes, Ramon & Tamarit, Jose M., 2019. "New exact methods for the time-invariant berth allocation and quay crane assignment problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 80-92.
    11. Imai, Akio & Chen, Hsieh Chia & Nishimura, Etsuko & Papadimitriou, Stratos, 2008. "The simultaneous berth and quay crane allocation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 900-920, September.
    12. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    13. Li, Bokang & Afkhami, Payam & Khayamim, Razieh & Borowska-Stefańska, Marta & Wiśniewski, Szymon & Fathollahi-Fard, Amir M. & Ozkul, Seckin & Dulebenets, Maxim A., 2025. "An intelligent hyperheuristic algorithm for the berth allocation and scheduling problem at marine container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    2. Xiang, Xi & Liu, Changchun, 2021. "An almost robust optimization model for integrated berth allocation and quay crane assignment problem," Omega, Elsevier, vol. 104(C).
    3. Iris, Çağatay & Pacino, Dario & Ropke, Stefan, 2017. "Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 123-147.
    4. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    5. Xufeng Tang & Chang Liu & Xinqi Li & Ying Ji, 2023. "Distributionally Robust Programming of Berth-Allocation-with-Crane-Allocation Problem with Uncertain Quay-Crane-Handling Efficiency," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    6. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    7. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    8. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    9. Bouzekri, Hamza & Alpan, Gülgün & Giard, Vincent, 2021. "Integrated Laycan and Berth Allocation and time-invariant Quay Crane Assignment Problem in tidal ports with multiple quays," European Journal of Operational Research, Elsevier, vol. 293(3), pages 892-909.
    10. Iris, Çağatay & Pacino, Dario & Ropke, Stefan & Larsen, Allan, 2015. "Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 75-97.
    11. Wang, Tingsong & Wang, Xinchang & Meng, Qiang, 2018. "Joint berth allocation and quay crane assignment under different carbon taxation policies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 18-36.
    12. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    13. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    14. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    15. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
    16. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "Recoverable robustness in weekly berth and quay crane planning," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 365-389.
    17. Shang, Xiao Ting & Cao, Jin Xin & Ren, Jie, 2016. "A robust optimization approach to the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 44-65.
    18. Wang, Chong & Wang, Qi & Xiang, Xi & Zhang, Canrong & Miao, Lixin, 2025. "Optimizing integrated berth allocation and quay crane assignment: A distributionally robust approach," European Journal of Operational Research, Elsevier, vol. 320(3), pages 593-615.
    19. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    20. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:4022-:d:1645955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.