IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v124y2019icp1-12.html
   My bibliography  Save this article

Freight service network design with heterogeneous preferences for transport time and reliability

Author

Listed:
  • Duan, Liwei
  • Tavasszy, Lorant A.
  • Rezaei, Jafar

Abstract

Value of time and value of reliability are two important user attributes that reflect shippers’ behavioral preferences, and as such influence the design of transport service networks. As shippers preferences will vary widely, it is important to consider these variations between users in the design of service networks. Up to now, network design research has ignored the combined use of time and reliability valuations for heterogeneous user populations. The objective of this paper is to address these attributes in a model for freight service network design targeting service performance improvement. We present a new frequency based service network design model with transshipments, capacity constraints and heterogeneous users. We apply the model to demonstrate that including heterogeneity explicitly in network design pays off in terms of an improved user performance of the network. A case study is conducted for a railway network in China. Values of time and reliability are estimated from a recent Stated Preference survey and used to determine distinct user classes. The proposed optimization problem is solved using an improved Simulated Annealing based heuristic method, for the case of the aggregate user group and the case of two distinct classes. Results show that by taking variations in shippers’ VOT and VOR into account, users’ total generalized cost is reduced while service levels improve. We conclude that incorporating heterogeneous VOT and VOR into the service network design problem is of interest for decisions on network investments.

Suggested Citation

  • Duan, Liwei & Tavasszy, Lorant A. & Rezaei, Jafar, 2019. "Freight service network design with heterogeneous preferences for transport time and reliability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 1-12.
  • Handle: RePEc:eee:transe:v:124:y:2019:i:c:p:1-12
    DOI: 10.1016/j.tre.2019.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554518313450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Bo-Liang & Wang, Zhi-Mei & Ji, Li-Jun & Tian, Ya-Ming & Zhou, Guo-Qing, 2012. "Optimizing the freight train connection service network of a large-scale rail system," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 649-667.
    2. Tan, Zhijia & Yang, Hai, 2012. "The impact of user heterogeneity on road franchising," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 958-975.
    3. Zhao, Yong & Kockelman, Kara Maria, 2006. "On-line marginal-cost pricing across networks: Incorporating heterogeneous users and stochastic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 424-435, June.
    4. Zhang, M. & Janic, M. & Tavasszy, L.A., 2015. "A freight transport optimization model for integrated network, service, and policy design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 61-76.
    5. Crainic, Teodor G. & Rousseau, Jean-Marc, 1986. "Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 225-242, June.
    6. Arunotayanun, Kriangkrai & Polak, John W., 2011. "Taste heterogeneity and market segmentation in freight shippers' mode choice behaviour," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 138-148, March.
    7. Luca Zamparini & Aura Reggiani, 2007. "Freight Transport and the Value of Travel Time Savings: A Meta‐analysis of Empirical Studies," Transport Reviews, Taylor & Francis Journals, vol. 27(5), pages 621-636, March.
    8. Jianjun Zhang & Ou Tang & Jin Zhao & Jiazhen Huo & Yonggang Xia, 2013. "CPEL Redesigns Its Land Express Network," Interfaces, INFORMS, vol. 43(3), pages 221-231, May-June.
    9. J Andersen & M Christiansen, 2009. "Designing new European rail freight services," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 348-360, March.
    10. Fowkes, Tony, 2007. "The design and interpretation of freight stated preference experiments seeking to elicit behavioural valuations of journey attributes," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 966-980, November.
    11. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    12. Yang, Hai & Yan Kong, Hoi & Meng, Qiang, 2001. "Value-of-time distributions and competitive bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(6), pages 411-424, December.
    13. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    14. Yang, Hai & Tang, Wilson H. & Man Cheung, Wing & Meng, Qiang, 2002. "Profitability and welfare gain of private toll roads in a network with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 537-554, July.
    15. Racunica, Illia & Wynter, Laura, 2005. "Optimal location of intermodal freight hubs," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 453-477, June.
    16. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2016. "Incorporating Driver Behaviors in Network Design Problems: Challenges and Opportunities," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 454-478, July.
    17. Yang, Hai & Huang, Hai-Jun, 2004. "The multi-class, multi-criteria traffic network equilibrium and systems optimum problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 1-15, January.
    18. Smilowitz, Karen Renee, 2001. "Design and Operation of Multimode, Multiservice Logistics Systems," University of California Transportation Center, Working Papers qt2bb1g26m, University of California Transportation Center.
    19. Shams, Kollol & Asgari, Hamidreza & Jin, Xia, 2017. "Valuation of travel time reliability in freight transportation: A review and meta-analysis of stated preference studies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 228-243.
    20. Kwon, Oh Kyoung & Martland, Carl D. & Sussman, Joseph M., 1998. "Routing and scheduling temporal and heterogeneous freight car traffic on rail networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(2), pages 101-115, June.
    21. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    22. Friesz, Terry L. & Anandalingam, G. & Mehta, Nihal J. & Nam, Keesung & Shah, Samir J. & Tobin, Roger L., 1993. "The multiobjective equilibrium network design problem revisited: A simulated annealing approach," European Journal of Operational Research, Elsevier, vol. 65(1), pages 44-57, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qinglin & Rezaei, Jafar & Tavasszy, Lori & Wiegmans, Bart & Guo, Jingwei & Tang, Yinying & Peng, Qiyuan, 2020. "Customers’ preferences for freight service attributes of China Railway Express," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 225-236.
    2. Zhuo Zhang & Dezhi Zhang & Lóránt A. Tavasszy & Qinglin Li, 2020. "Multicriteria Intermodal Freight Network Optimal Problem with Heterogeneous Preferences under Belt and Road Initiative," Sustainability, MDPI, vol. 12(24), pages 1-24, December.
    3. Wang, Hua & Meng, Qiang & Zhang, Xiaoning, 2020. "Multiple equilibrium behaviors of auto travellers and a freight carrier under the cordon-based large-truck restriction regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    4. Yuan, Hang & Wang, Kun & Yang, Hangjun, 2022. "Rail's efficiency gain by separating affiliated businesses and its impact on product mix of export by rail," Transport Policy, Elsevier, vol. 115(C), pages 126-140.
    5. Bouchery, Yann & Woxenius, Johan & Fransoo, Jan C., 2020. "Identifying the market areas of port-centric logistics and hinterland intermodal transportation," European Journal of Operational Research, Elsevier, vol. 285(2), pages 599-611.
    6. Ján Ližbetin & Ondrej Stopka, 2020. "Application of Specific Mathematical Methods in the Context of Revitalization of Defunct Intermodal Transport Terminal: A Case Study," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    7. Edward Kim, M. & Schonfeld, Paul & Roche, Austin & Raleigh, Chelsie, 2022. "Optimal service zones and frequencies for flexible-route freight deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 182-199.
    8. Wang, Zhenjie & Zhang, Dezhi & Tavasszy, Lóránt & Fazi, Stefano, 2023. "Integrated multimodal freight service network design and pricing with a competing service integrator and heterogeneous shipper classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    9. Cassiano A. Isler & Yesid Asaff & Marin Marinov, 2020. "Designing a Geo-Strategic Railway Freight Network in Brazil Using GIS," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    10. Zhang, Yimeng & Li, Xinlei & van Hassel, Edwin & Negenborn, Rudy R. & Atasoy, Bilge, 2022. "Synchromodal transport planning considering heterogeneous and vague preferences of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    11. Wei Chiang Chan & Wan Hashim Wan Ibrahim & May Chiun Lo & Mohamad Kadim Suaidi & Shiaw Tong Ha, 2020. "Sustainability of Public Transportation: An Examination of User Behavior to Real-Time GPS Tracking Application," Sustainability, MDPI, vol. 12(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cassiano A. Isler & Yesid Asaff & Marin Marinov, 2020. "Designing a Geo-Strategic Railway Freight Network in Brazil Using GIS," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    2. Bilegan, Ioana C. & Crainic, Teodor Gabriel & Wang, Yunfei, 2022. "Scheduled service network design with revenue management considerations and an intermodal barge transportation illustration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 164-177.
    3. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    4. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    5. Meng, Qiang & Hei, Xiuling & Wang, Shuaian & Mao, Haijun, 2015. "Carrying capacity procurement of rail and shipping services for automobile delivery with uncertain demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 38-54.
    6. Chen, Chongshuang & Dollevoet, Twan & Zhao, Jun, 2018. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 1-30.
    7. Tao, Xuezong & Zhu, Lichao, 2020. "Meta-analysis of value of time in freight transportation: A comprehensive review based on discrete choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 213-233.
    8. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    9. Zhimei Wang & Avishai Ceder, 2017. "Efficient design of freight train operation with double-hump yards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1600-1619, December.
    10. Chen, C. & Dollevoet, T.A.B. & Zhao, J., 2017. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Econometric Institute Research Papers EI-2017-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    12. Thibault Delbart & Yves Molenbruch & Kris Braekers & An Caris, 2021. "Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    13. Joris Wagenaar & Ioannis Fragkos & Rob Zuidwijk, 2021. "Integrated Planning for Multimodal Networks with Disruptions and Customer Service Requirements," Transportation Science, INFORMS, vol. 55(1), pages 196-221, 1-2.
    14. Yi Zhao & Ronghui Liu & Xi Zhang & Anthony Whiteing, 2018. "A chance-constrained stochastic approach to intermodal container routing problems," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-22, February.
    15. Qu, Wenhua & Rezaei, Jafar & Maknoon, Yousef & Tavasszy, Lóránt, 2019. "Hinterland freight transportation replanning model under the framework of synchromodality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 308-328.
    16. Bergantino, Angela S. & Bierlaire, Michel & Catalano, Mario & Migliore, Marco & Amoroso, Salvatore, 2013. "Taste heterogeneity and latent preferences in the choice behaviour of freight transport operators," Transport Policy, Elsevier, vol. 30(C), pages 77-91.
    17. Zhang, X. & Liu, X., 2022. "A two-stage robust model for express service network design with surging demand," European Journal of Operational Research, Elsevier, vol. 299(1), pages 154-167.
    18. Bai, Ruibin & Wallace, Stein W. & Li, Jingpeng & Chong, Alain Yee-Loong, 2014. "Stochastic service network design with rerouting," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 50-65.
    19. Vega, Amaya & Feo-Valero, Maria & Espino-Espino, Raquel, 2021. "Understanding maritime transport route choice among Irish exporters: A latent class approach," Research in Transportation Economics, Elsevier, vol. 90(C).
    20. Martin Hrušovský & Emrah Demir & Werner Jammernegg & Tom Woensel, 2018. "Hybrid simulation and optimization approach for green intermodal transportation problem with travel time uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 486-516, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:124:y:2019:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.