IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v60y2009i3d10.1057_palgrave.jors.2602559.html
   My bibliography  Save this article

Designing new European rail freight services

Author

Listed:
  • J Andersen

    (Norwegian University of Science and Technology
    Institute of Transport Economics)

  • M Christiansen

    (Norwegian University of Science and Technology)

Abstract

We present an optimization model for design of transportation services, with a particular emphasis on how attention to service quality affects the design. The model is applied to a real-world case study where opportunities for new rail-based freight transportation services are explored. Fleet sizing is introduced to the service network design, because cost of acquiring locomotives is high, and inefficient resource utilization could result if fleet sizing is carried out a posteriori. The problem is a cross-border planning problem, introducing need for change of locomotives at borders, and separate fleets of locomotives thus have to be modelled. Demand in the system is characterized by various commodity groups with different service quality requirements. We propose a mixed integer programming model with a nonlinear objective function. The model finds the most profitable operations for the train operator when important service quality factors are accounted for.

Suggested Citation

  • J Andersen & M Christiansen, 2009. "Designing new European rail freight services," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 348-360, March.
  • Handle: RePEc:pal:jorsoc:v:60:y:2009:i:3:d:10.1057_palgrave.jors.2602559
    DOI: 10.1057/palgrave.jors.2602559
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602559
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crainic, Teodor G. & Rousseau, Jean-Marc, 1986. "Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 225-242, June.
    2. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    3. Dall'Orto, Leonardo Campo & Crainic, Teodor Gabriel & Leal, Jose Eugenio & Powell, Warren B., 2006. "The single-node dynamic service scheduling and dispatching problem," European Journal of Operational Research, Elsevier, vol. 170(1), pages 1-23, April.
    4. Daeki Kim & Cynthia Barnhart & Keith Ware & Gregory Reinhardt, 1999. "Multimodal Express Package Delivery: A Service Network Design Application," Transportation Science, INFORMS, vol. 33(4), pages 391-407, November.
    5. Teodor Crainic & Jacques-A. Ferland & Jean-Marc Rousseau, 1984. "A Tactical Planning Model for Rail Freight Transportation," Transportation Science, INFORMS, vol. 18(2), pages 165-184, May.
    6. Michael Francis Gorman, 1998. "An application of genetic and tabu searches to the freight railroad operating plan problem," Annals of Operations Research, Springer, vol. 78(0), pages 51-69, January.
    7. Smilowitz, Karen R. & Atamtürk, Alper & Daganzo, Carlos F., 2003. "Deferred item and vehicle routing within integrated networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(4), pages 305-323, July.
    8. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    2. Qu, Wenhua & Rezaei, Jafar & Maknoon, Yousef & Tavasszy, Lóránt, 2019. "Hinterland freight transportation replanning model under the framework of synchromodality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 308-328.
    3. Line Blander Reinhardt & David Pisinger & Richard Lusby, 2018. "Railway capacity and expansion analysis using time discretized paths," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 712-739, December.
    4. Thibault Delbart & Yves Molenbruch & Kris Braekers & An Caris, 2021. "Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    5. Bilegan, Ioana C. & Crainic, Teodor Gabriel & Wang, Yunfei, 2022. "Scheduled service network design with revenue management considerations and an intermodal barge transportation illustration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 164-177.
    6. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    7. David Wolfinger & Fabien Tricoire & Karl F. Doerner, 2019. "A matheuristic for a multimodal long haul routing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 397-433, December.
    8. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    9. Alberto Caprara & Enrico Malaguti & Paolo Toth, 2011. "A Freight Service Design Problem for a Railway Corridor," Transportation Science, INFORMS, vol. 45(2), pages 147-162, May.
    10. Duan, Liwei & Tavasszy, Lorant A. & Rezaei, Jafar, 2019. "Freight service network design with heterogeneous preferences for transport time and reliability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 1-12.
    11. Wang, Zujian & Qi, Mingyao & Cheng, Chun & Zhang, Canrong, 2019. "A hybrid algorithm for large-scale service network design considering a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 276(2), pages 483-494.
    12. Akgün, İbrahim & Özkil, Altan & Gören, Selçuk, 2020. "A multimodal, multicommodity, and multiperiod planning problem for coal distribution to poor families," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    13. J Bauer & T Bektaş & T G Crainic, 2010. "Minimizing greenhouse gas emissions in intermodal freight transport: an application to rail service design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 530-542, March.
    14. Achilleas Tsantis & John Mangan & Agustina Calatayud & Roberto Palacin, 2023. "Container shipping: a systematic literature review of themes and factors that influence the establishment of direct connections between countries," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(4), pages 667-697, December.
    15. Zhimei Wang & Avishai Ceder, 2017. "Efficient design of freight train operation with double-hump yards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1600-1619, December.
    16. Zhang, X. & Liu, X., 2022. "A two-stage robust model for express service network design with surging demand," European Journal of Operational Research, Elsevier, vol. 299(1), pages 154-167.
    17. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    18. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    2. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    3. Dall'Orto, Leonardo Campo & Crainic, Teodor Gabriel & Leal, Jose Eugenio & Powell, Warren B., 2006. "The single-node dynamic service scheduling and dispatching problem," European Journal of Operational Research, Elsevier, vol. 170(1), pages 1-23, April.
    4. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    5. Bilegan, Ioana C. & Crainic, Teodor Gabriel & Wang, Yunfei, 2022. "Scheduled service network design with revenue management considerations and an intermodal barge transportation illustration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 164-177.
    6. Meng, Qiang & Hei, Xiuling & Wang, Shuaian & Mao, Haijun, 2015. "Carrying capacity procurement of rail and shipping services for automobile delivery with uncertain demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 38-54.
    7. Chen, C. & Dollevoet, T.A.B. & Zhao, J., 2017. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Econometric Institute Research Papers EI-2017-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Lanza, Giacomo & Crainic, Teodor Gabriel & Rei, Walter & Ricciardi, Nicoletta, 2021. "Scheduled service network design with quality targets and stochastic travel times," European Journal of Operational Research, Elsevier, vol. 288(1), pages 30-46.
    9. Chen, Chongshuang & Dollevoet, Twan & Zhao, Jun, 2018. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 1-30.
    10. Jardar Andersen & Marielle Christiansen & Teodor Gabriel Crainic & Roar Grønhaug, 2011. "Branch and Price for Service Network Design with Asset Management Constraints," Transportation Science, INFORMS, vol. 45(1), pages 33-49, February.
    11. Schwerdfeger, Stefan & Otto, Alena & Boysen, Nils, 2021. "Rail platooning: Scheduling trains along a rail corridor with rapid-shunting facilities," European Journal of Operational Research, Elsevier, vol. 294(2), pages 760-778.
    12. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    13. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    14. Greening, Lacy M. & Dahan, Mathieu & Erera, Alan L., 2023. "Lead-Time-Constrained Middle-Mile Consolidation Network Design with Fixed Origins and Destinations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    15. Li, Xiangyong & Wei, Kai & Guo, Zhaoxia & Wang, Wei & Aneja, Y.P., 2021. "An exact approach for the service network design problem with heterogeneous resource constraints," Omega, Elsevier, vol. 102(C).
    16. Andersen, Jardar & Crainic, Teodor Gabriel & Christiansen, Marielle, 2009. "Service network design with management and coordination of multiple fleets," European Journal of Operational Research, Elsevier, vol. 193(2), pages 377-389, March.
    17. J Bauer & T Bektaş & T G Crainic, 2010. "Minimizing greenhouse gas emissions in intermodal freight transport: an application to rail service design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 530-542, March.
    18. Smilowitz, Karen R. & Atamturk, Alper & Daganzo, Carlos F., 2002. "Deferred Item and Vehicle Routing within Integrated Networks," University of California Transportation Center, Working Papers qt0xn2d6kn, University of California Transportation Center.
    19. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    20. Jin, Jian Gang & Zhao, Jun & Lee, Der-Horng, 2013. "A column generation based approach for the Train Network Design Optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:60:y:2009:i:3:d:10.1057_palgrave.jors.2602559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.