IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v90y2016icp135-155.html
   My bibliography  Save this article

Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian

Author

Listed:
  • Meng, Qiang
  • Lee, Chung-Yee

Abstract

This paper proposes a practical tactical-level liner container assignment model for liner shipping companies, in which the container shipment demand is a non-increasing function of the transit time. Given the transit-time-sensitive demand, the model aims to determine which proportion of the demand to fulfill and how to transport these containers in a liner shipping network to maximize the total profit. Although the proposed model is similar to multi-commodity network-flow (MCNF) with side constraints, unlike the MCNF with time delay constraints or reliability constraints that is NP-hard, we show that the liner container assignment model is polynomially solvable due to its weekly schedule characteristics by developing two link-based linear programing formulations. A number of practical extensions and applications are analyzed and managerial insights are discussed. The polynomially solvable liner container assignment model is then applied to address several important decision problems proposed by a global liner shipping company.

Suggested Citation

  • Meng, Qiang & Lee, Chung-Yee, 2016. "Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 135-155.
  • Handle: RePEc:eee:transb:v:90:y:2016:i:c:p:135-155
    DOI: 10.1016/j.trb.2016.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515300709
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bell, Michael G.H. & Liu, Xin & Rioult, Jeremy & Angeloudis, Panagiotis, 2013. "A cost-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 58-70.
    2. Mulder, Judith & Dekker, Rommert, 2014. "Methods for strategic liner shipping network design," European Journal of Operational Research, Elsevier, vol. 235(2), pages 367-377.
    3. Theo E Notteboom, 2006. "The Time Factor in Liner Shipping Services," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 19-39, March.
    4. Dong, Jing-Xin & Lee, Chung-Yee & Song, Dong-Ping, 2015. "Joint service capacity planning and dynamic container routing in shipping network with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 404-421.
    5. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    6. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Containership scheduling with transit-time-sensitive container shipment demand," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 68-83.
    7. Wang, Yadong & Meng, Qiang & Du, Yuquan, 2015. "Liner container seasonal shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 141-161.
    8. Wang, Shuaian & Liu, Zhiyuan & Bell, Michael G.H., 2015. "Profit-based maritime container assignment models for liner shipping networks," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 59-76.
    9. Wang, Shuaian & Liu, Zhiyuan & Meng, Qiang, 2015. "Segment-based alteration for container liner shipping network design," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 128-145.
    10. Bell, Michael G.H. & Liu, Xin & Angeloudis, Panagiotis & Fonzone, Achille & Hosseinloo, Solmaz Haji, 2011. "A frequency-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1152-1161, September.
    11. Gamst, Mette & Neergaard Jensen, Peter & Pisinger, David & Plum, Christian, 2010. "Two- and three-index formulations of the minimum cost multicommodity k-splittable flow problem," European Journal of Operational Research, Elsevier, vol. 202(1), pages 82-89, April.
    12. Dobrivskyy T., 2015. "State policy in administrative services," Management, Academy of Municipal Administration, vol. 10(2), pages 58-67, April.
    13. Kuntal K. Saha & Masum Billah & Purnima Menon & Shams El Arifeen & Nkosinathi V.N. Mbuya, 2015. "Bangladesh National Nutrition Services," World Bank Publications, The World Bank, number 22377, November.
    14. Ng, ManWo, 2015. "Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 79-87.
    15. Song, Dong-Ping & Dong, Jing-Xin, 2012. "Cargo routing and empty container repositioning in multiple shipping service routes," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1556-1575.
    16. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
    2. Zhang, Ruiyou & Zhao, Haishu & Moon, Ilkyeong, 2018. "Range-based truck-state transition modeling method for foldable container drayage services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 225-239.
    3. Zhen, Lu & Wang, Shuaian & Zhuge, Dan, 2017. "Analysis of three container routing strategies," International Journal of Production Economics, Elsevier, vol. 193(C), pages 259-271.
    4. E. Zhang & Feng Chu & Shijin Wang & Ming Liu & Yang Sui, 0. "Approximation approach for robust vessel fleet deployment problem with ambiguous demands," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-15.
    5. Reinhardt, Line Blander & Pisinger, David & Sigurd, Mikkel M. & Ahmt, Jonas, 2020. "Speed optimizations for liner networks with business constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1127-1140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    2. Nguyen Khoi Tran & Hans-Dietrich Haasis & Tobias Buer, 2017. "Container shipping route design incorporating the costs of shipping, inland/feeder transport, inventory and CO2 emission," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 667-694, December.
    3. Wang, Shuaian, 2016. "Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 46-55.
    4. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    5. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    6. Wang, Shuaian & Liu, Zhiyuan & Bell, Michael G.H., 2015. "Profit-based maritime container assignment models for liner shipping networks," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 59-76.
    7. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    8. Wang, Yadong & Meng, Qiang & Du, Yuquan, 2015. "Liner container seasonal shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 141-161.
    9. Wang, Kai & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2017. "Cruise service planning considering berth availability and decreasing marginal profit," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 1-18.
    10. Wang, Shuaian, 2014. "A novel hybrid-link-based container routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 165-175.
    11. Zheng, Jianfeng & Sun, Zhuo & Gao, Ziyou, 2015. "Empty container exchange among liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 158-169.
    12. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
    13. Wang, Shuaian & Qu, Xiaobo & Yang, Ying, 2015. "Estimation of the perceived value of transit time for containerized cargoes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 298-308.
    14. Wang, Shuaian, 2015. "Optimal sequence of container ships in a string," European Journal of Operational Research, Elsevier, vol. 246(3), pages 850-857.
    15. Yang, Dong & Pan, Kai & Wang, Shuaian, 2018. "On service network improvement for shipping lines under the one belt one road initiative of China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 117(C), pages 82-95.
    16. Wang, Shuaian & Wang, Hua & Meng, Qiang, 2015. "Itinerary provision and pricing in container liner shipping revenue management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 135-146.
    17. Mulder, J. & Dekker, R., 2016. "Optimization in container liner shipping," Econometric Institute Research Papers EI2016-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    19. Wang, Shuaian & Liu, Zhiyuan & Meng, Qiang, 2015. "Segment-based alteration for container liner shipping network design," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 128-145.
    20. Chen, Jingxu & Jia, Shuai & Wang, Shuaian & Liu, Zhiyuan, 2018. "Subloop-based reversal of port rotation directions for container liner shipping network alteration," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 336-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:90:y:2016:i:c:p:135-155. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.