IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v39y2005i8p753-767.html
   My bibliography  Save this article

Stochastic social optimum traffic assignment

Author

Listed:
  • Maher, Mike
  • Stewart, Kathryn
  • Rosa, Andrea

Abstract

This paper formulates a Stochastic Social Optimum (SSO) that relates to the Stochastic User Equilibrium (SUE) in the same way as the Social Optimum (SO) relates to the User Equilibrium (UE) in a deterministic environment. At the SSO solution, the total of the users' perceived costs is minimised. The formulation and analysis is carried out in a general utility-maximising framework, with the probit and logit models being special cases. Conditions for the SSO flow pattern are derived, from which it can be seen that the marginal social costs play the same role in the SSO as the standard costs play in SUE. In particular, it is shown that the SSO solution can be obtained through the use of an algorithm for SUE, but with the marginal costs replacing the standard costs in the stochastic loading and that optimal tolls are the differences between the marginal social costs and the standard costs. For the case of the logit model an explicit path-based objective function is obtained which is of a pleasing symmetrical form when compared with the objective functions for SUE, SO and UE. Additionally, a link-based objective function for the general utility-maximising case is formulated for SSO, which is similar in form to the SUE objective function of Sheffi and Powell.

Suggested Citation

  • Maher, Mike & Stewart, Kathryn & Rosa, Andrea, 2005. "Stochastic social optimum traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 753-767, September.
  • Handle: RePEc:eee:transb:v:39:y:2005:i:8:p:753-767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(04)00139-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Hai Yang, 1999. "System Optimum, Stochastic User Equilibrium, and Optimal Link Tolls," Transportation Science, INFORMS, vol. 33(4), pages 354-360, November.
    3. Maher, M. J. & Hughes, P. C., 1997. "A probit-based stochastic user equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 341-355, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hai-Jun Huang & Tian-Liang Liu & Xiaolei Guo & Hai Yang, 2011. "Inefficiency of Logit-Based Stochastic User Equilibrium in a Traffic Network Under ATIS," Networks and Spatial Economics, Springer, vol. 11(2), pages 255-269, June.
    2. Sumalee, Agachai & Xu, Wei, 2011. "First-best marginal cost toll for a traffic network with stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 41-59, January.
    3. Stewart, Kathryn, 2007. "Tolling traffic links under stochastic assignment: Modelling the relationship between the number and price level of tolled links and optimal traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 644-654, August.
    4. Guo, Xiaolei & Yang, Hai & Liu, Tian-Liang, 2010. "Bounding the inefficiency of logit-based stochastic user equilibrium," European Journal of Operational Research, Elsevier, vol. 201(2), pages 463-469, March.
    5. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Pareto-improving congestion pricing on multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 210(3), pages 660-669, May.
    6. Paul Koster & Erik T. Verhoef & Simon Shepherd & David Watling, 2014. "Probabilistic Choice and Congestion Pricing with Heterogeneous Travellers and Price-Sensitive Demand," Tinbergen Institute Discussion Papers 14-078/VIII, Tinbergen Institute, revised 13 Nov 2014.
    7. Lu, Xiao-Shan & Liu, Tian-Liang & Huang, Hai-Jun, 2015. "Pricing and mode choice based on nested logit model with trip-chain costs," Transport Policy, Elsevier, vol. 44(C), pages 76-88.
    8. Koster, Paul & Verhoef, Erik & Shepherd, Simon & Watling, David, 2018. "Preference heterogeneity and congestion pricing: The two route case revisited," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 137-157.
    9. Canca, David & Zarzo, Alejandro & Algaba, Encarnación & Barrena, Eva, 2013. "Macroscopic attraction-based simulation of pedestrian mobility: A dynamic individual route-choice approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 428-442.
    10. Liu, Zhiyuan & Wang, Shuaian & Meng, Qiang, 2014. "Optimal joint distance and time toll for cordon-based congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 81-97.
    11. Qiang Meng & Zhiyuan Liu, 2011. "Trial-and-error method for congestion pricing scheme under side-constrained probit-based stochastic user equilibrium conditions," Transportation, Springer, vol. 38(5), pages 819-843, September.
    12. Hazelton, Martin L., 2022. "The emergence of stochastic user equilibria in day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 102-112.
    13. Qiumin Liu & Vincent A.C. van den Berg & Erik T. Verhoef & Rui Jiang, 2024. "Pricing in the Stochastic Bottleneck Model with Price-Sensitive Demand," Tinbergen Institute Discussion Papers 24-011/VIII, Tinbergen Institute, revised 22 Oct 2024.
    14. Huang, Ruqing & Han, Lee D. & Huang, Zhongxiang, 2022. "A new network equilibrium flow model: User-equilibrium with quantity adjustment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    15. Xie, Chi & Travis Waller, S., 2012. "Stochastic traffic assignment, Lagrangian dual, and unconstrained convex optimization," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1023-1042.
    16. Watling, D.P. & Shepherd, S.P. & Koh, A., 2015. "Cordon toll competition in a network of two cities: Formulation and sensitivity to traveller route and demand responses," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 93-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    2. Maher, Mike, 1998. "Algorithms for logit-based stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 539-549, November.
    3. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    4. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    5. Koster, Paul & Verhoef, Erik & Shepherd, Simon & Watling, David, 2018. "Preference heterogeneity and congestion pricing: The two route case revisited," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 137-157.
    6. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.
    7. Nie, Yu (Marco), 2011. "Multi-class percentile user equilibrium with flow-dependent stochasticity," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1641-1659.
    8. Connors, Richard D. & Sumalee, Agachai & Watling, David P., 2007. "Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 593-615, July.
    9. Paul Koster & Erik T. Verhoef & Simon Shepherd & David Watling, 2014. "Probabilistic Choice and Congestion Pricing with Heterogeneous Travellers and Price-Sensitive Demand," Tinbergen Institute Discussion Papers 14-078/VIII, Tinbergen Institute, revised 13 Nov 2014.
    10. Xie, Chi & Travis Waller, S., 2012. "Stochastic traffic assignment, Lagrangian dual, and unconstrained convex optimization," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1023-1042.
    11. Claudia Castaldi & Paolo Delle Site & Francesco Filippi, 2019. "Stochastic user equilibrium in the presence of state dependence," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 535-559, December.
    12. Guo, Xiaolei & Yang, Hai & Liu, Tian-Liang, 2010. "Bounding the inefficiency of logit-based stochastic user equilibrium," European Journal of Operational Research, Elsevier, vol. 201(2), pages 463-469, March.
    13. Stewart, Kathryn, 2007. "Tolling traffic links under stochastic assignment: Modelling the relationship between the number and price level of tolled links and optimal traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 644-654, August.
    14. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2002. "Network pricing optimization in multi-user and multimodal context with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 779-798, November.
    15. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    17. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    18. Bell, Michael G. H., 1995. "Stochastic user equilibrium assignment in networks with queues," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 125-137, April.
    19. Hong, Sung-Pil & Kim, Kyung min & Byeon, Geunyeong & Min, Yun-Hong, 2017. "A method to directly derive taste heterogeneity of travellers’ route choice in public transport from observed routes," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 41-52.
    20. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:39:y:2005:i:8:p:753-767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.