IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v39y2005i4p339-360.html
   My bibliography  Save this article

Improving the computational efficiency of highway alignment optimization models through a stepwise genetic algorithms approach

Author

Listed:
  • Kim, Eungcheol
  • Jha, Manoj K.
  • Son, Bongsoo

Abstract

In this paper we propose a stepwise genetic algorithms approach for optimizing highway alignments for improving computational efficiency and quality of solutions. Our previous work in highway alignment optimization has demonstrated that computational burden is a significant issue when working with a geographic information system (GIS) database requiring numerous spatial analyses. For solving real-world problems working directly with real maps through a GIS is highly desirable. Furthermore, saving computation time can enhance adoptability of a model especially when a study area is relatively large, or involves many sensitive properties, or if locating complex structures such as intersections, bridges and tunnels is necessary. It is well acknowledged that in many optimization processes subdividing large problems into smaller pieces can decrease the computation time and produce a better solution. In this research two different population sizes are used to develop a stepwise alignment optimization when employing genetic algorithms in suitably subdivided study areas. An example study shows that the proposed stepwise optimization gives more efficient results than the existing methods and also improves quality of solutions.

Suggested Citation

  • Kim, Eungcheol & Jha, Manoj K. & Son, Bongsoo, 2005. "Improving the computational efficiency of highway alignment optimization models through a stepwise genetic algorithms approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 339-360, May.
  • Handle: RePEc:eee:transb:v:39:y:2005:i:4:p:339-360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(04)00084-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dan Trietsch, 1987. "A Family of Methods for Preliminary Highway Alignment," Transportation Science, INFORMS, vol. 21(1), pages 17-25, February.
    2. Chew, E. P. & Goh, C. J. & Fwa, T. F., 1989. "Simultaneous optimization of horizontal and vertical alignments for highways," Transportation Research Part B: Methodological, Elsevier, vol. 23(5), pages 315-329, October.
    3. Jong, Jyh-Cherng & Schonfeld, Paul, 2003. "An evolutionary model for simultaneously optimizing three-dimensional highway alignments," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 107-128, February.
    4. Thomson, N. R. & Sykes, J. F., 1988. "Route selection through a dynamic ice field using the maximum principle," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 339-356, October.
    5. Dan Trietsch, 1987. "Comprehensive Design of Highway Networks," Transportation Science, INFORMS, vol. 21(1), pages 26-35, February.
    6. Jha, Manoj K. & Schonfeld, Paul, 2004. "A highway alignment optimization model using geographic information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 455-481, July.
    7. Goh, C. J. & Chew, E. P. & Fwa, T. F., 1988. "Discrete and continuous models for computation of optimal vertical highway alignment," Transportation Research Part B: Methodological, Elsevier, vol. 22(6), pages 399-409, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Monnet & Warren Hare & Yves Lucet, 2020. "Fast feasibility check of the multi-material vertical alignment problem in road design," Computational Optimization and Applications, Springer, vol. 75(2), pages 515-536, March.
    2. Mukund Pratap Singh & Pitam Singh & Priyamvada Singh, 2019. "Fuzzy AHP-based multi-criteria decision-making analysis for route alignment planning using geographic information system (GIS)," Journal of Geographical Systems, Springer, vol. 21(3), pages 395-432, September.
    3. Salvatore Antonio Biancardo & Francesco Avella & Ernesto Di Lisa & Xinqiang Chen & Francesco Abbondati & Gianluca Dell’Acqua, 2021. "Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
    4. Eungcheol Kim & Myungseob (Edward) Kim & Gabrielle Delos & Tyler Clark, 2019. "Post-Construction Alignment Revision in Direct-Fixation Railroad Tracks," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    5. Hao Pu & Jia Xie & Paul Schonfeld & Taoran Song & Wei Li & Jie Wang & Jianping Hu, 2021. "Railway Alignment Optimization in Mountainous Regions Considering Spatial Geological Hazards: A Sustainable Safety Perspective," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    6. Hare, Warren L. & Koch, Valentin R. & Lucet, Yves, 2011. "Models and algorithms to improve earthwork operations in road design using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 215(2), pages 470-480, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Manoj K. & Schonfeld, Paul, 2004. "A highway alignment optimization model using geographic information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 455-481, July.
    2. Pushak, Yasha & Hare, Warren & Lucet, Yves, 2016. "Multiple-path selection for new highway alignments using discrete algorithms," European Journal of Operational Research, Elsevier, vol. 248(2), pages 415-427.
    3. Jong, Jyh-Cherng & Schonfeld, Paul, 2003. "An evolutionary model for simultaneously optimizing three-dimensional highway alignments," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 107-128, February.
    4. Mukund Pratap Singh & Pitam Singh & Priyamvada Singh, 2019. "Fuzzy AHP-based multi-criteria decision-making analysis for route alignment planning using geographic information system (GIS)," Journal of Geographical Systems, Springer, vol. 21(3), pages 395-432, September.
    5. Dominique Monnet & Warren Hare & Yves Lucet, 2020. "Fast feasibility check of the multi-material vertical alignment problem in road design," Computational Optimization and Applications, Springer, vol. 75(2), pages 515-536, March.
    6. Eungcheol Kim & Myungseob (Edward) Kim & Gabrielle Delos & Tyler Clark, 2019. "Post-Construction Alignment Revision in Direct-Fixation Railroad Tracks," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    7. Lee, Yusin & Cheng, Juey-Fu, 2001. "A model for calculating optimal vertical alignments of interchanges," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 423-445, June.
    8. Hao Pu & Jia Xie & Paul Schonfeld & Taoran Song & Wei Li & Jie Wang & Jianping Hu, 2021. "Railway Alignment Optimization in Mountainous Regions Considering Spatial Geological Hazards: A Sustainable Safety Perspective," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    9. García-Chan, N. & Alvarez-Vázquez, L.J. & Martínez, A. & Vázquez-Méndez, M.E., 2021. "Designing an ecologically optimized road corridor surrounding restricted urban areas: A mathematical methodology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 745-759.
    10. Santos, Lui­s & Coutinho-Rodrigues, João & Current, John R., 2008. "Implementing a multi-vehicle multi-route spatial decision support system for efficient trash collection in Portugal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 922-934, July.
    11. Benjamin Faber, 2014. "Trade Integration, Market Size, and Industrialization: Evidence from China's National Trunk Highway System," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1046-1070.
    12. Wu, Fei & Schonfeld, Paul, 2022. "Optimized two-directional phased development of a rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 424-447.
    13. Jakub Montewka & Floris Goerlandt & Mikko Lensu & Lauri Kuuliala & Robert Guinness, 2019. "Toward a hybrid model of ship performance in ice suitable for route planning purpose," Journal of Risk and Reliability, , vol. 233(1), pages 18-34, February.
    14. Budjan, Angelika, 2022. "Move on up - Electrification and Internal Migration," VfS Annual Conference 2022 (Basel): Big Data in Economics 264043, Verein für Socialpolitik / German Economic Association.
    15. Davis, Coray & Jha, Manoj K., 2011. "A dynamic modeling approach to investigate impacts to protected and low-income populations in highway planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 598-610, August.
    16. Peng, Ya-Ting & Li, Zhi-Chun & Schonfeld, Paul, 2019. "Development of rail transit network over multiple time periods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 235-250.
    17. Hare, Warren & Lucet, Yves & Rahman, Faisal, 2015. "A mixed-integer linear programming model to optimize the vertical alignment considering blocks and side-slopes in road construction," European Journal of Operational Research, Elsevier, vol. 241(3), pages 631-641.
    18. Lovell, David J. & Jong, Jyh-Cherng & Chang, Peter C., 2001. "Clear zone requirements based on horizontal sight distance considerations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(5), pages 391-411, June.
    19. Mohammad Mahanpoor & Saeed Monajjem & Vahid Balali, 2019. "Sustainable Highway Maintenance: Optimization of Existing Highway Vertical Alignment Considering Pavement Condition," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    20. Salvatore Antonio Biancardo & Francesco Avella & Ernesto Di Lisa & Xinqiang Chen & Francesco Abbondati & Gianluca Dell’Acqua, 2021. "Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel," Sustainability, MDPI, vol. 13(19), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:39:y:2005:i:4:p:339-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.