IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v195y2025ics0191261525000359.html
   My bibliography  Save this article

A flexible non-normal random coefficient multinomial probit model: Application to investigating commuter's mode choice behavior in a developing economy context

Author

Listed:
  • Bhat, Chandra R.
  • Mondal, Aupal
  • Pinjari, Abdul Rawoof

Abstract

There is growing interest in employing non-normal parameter distributions on covariates to account for random taste heterogeneity in multinomial choice models. In this study, we propose a flexible, computationally tractable, structurally simple, and parsimonious-in-specification random coefficients multinomial probit (MNP) model that can accommodate non-normality in the random coefficients. Our proposed methodology subsumes the normally distributed random coefficient MNP model as a special case, thus eliminating the need to a priori decide on the distributional assumption for each coefficient. The approach employs an implicit Gaussian copula to combine the univariate coefficient distributions into a multivariate distribution with a flexible dependence structure. Using our new flexible MNP framework, we investigate the commute mode choice behavior for workers in the city of Bengaluru, a metropolitan city in southern India. Results from our analysis indicate that sociodemographic variables, commute characteristics, and mode-related attributes significantly impact the commute mode choice decision. Importantly, our results indicate the presence of unobserved taste heterogeneity in the sensitivities to the travel time and travel cost variables; moreover, the distribution of the travel time coefficient is found to be significantly non-normal. In terms of data fit, our proposed model statistically outperforms the traditional MNP model as well as an MNP model that imposes normality on the travel time coefficient. The pitfalls of ignoring non-normality in the distribution of parameters are also discussed, as are several policies to promote a shift from private modes of transportation to more sustainable public transportation/walk modes.

Suggested Citation

  • Bhat, Chandra R. & Mondal, Aupal & Pinjari, Abdul Rawoof, 2025. "A flexible non-normal random coefficient multinomial probit model: Application to investigating commuter's mode choice behavior in a developing economy context," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transb:v:195:y:2025:i:c:s0191261525000359
    DOI: 10.1016/j.trb.2025.103186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261525000359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2025.103186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    2. Shivakumar Nayka & Kala Seetharam Sridhar, 2019. "Determinants of intra urban mobility: A study of Bengaluru," Working Papers 437, Institute for Social and Economic Change, Bangalore.
    3. Torres, Cati & Hanley, Nick & Riera, Antoni, 2011. "How wrong can you be? Implications of incorrect utility function specification for welfare measurement in choice experiments," Journal of Environmental Economics and Management, Elsevier, vol. 62(1), pages 111-121, July.
    4. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    5. Fabian Bastin & Cinzia Cirillo & Philippe L. Toint, 2010. "Estimating Nonparametric Random Utility Models with an Application to the Value of Time in Heterogeneous Populations," Transportation Science, INFORMS, vol. 44(4), pages 537-549, November.
    6. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    7. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    8. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    9. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, Enero-Abr.
    10. Peter E. Rossi, 2014. "Bayesian Non- and Semi-parametric Methods and Applications," Economics Books, Princeton University Press, edition 1, number 10259.
    11. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    12. Bhat, Chandra R. & Mondal, Aupal, 2022. "A New Flexible Generalized Heterogeneous Data Model (GHDM) with an Application to Examine the Effect of High Density Neighborhood Living on Bicycling Frequency," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 244-266.
    13. Shirgaokar, Manish, 2014. "Employment centers and travel behavior: exploring the work commute of Mumbai’s rapidly motorizing middle class," Journal of Transport Geography, Elsevier, vol. 41(C), pages 249-258.
    14. Janak Parmar & Gulnazbanu Saiyed & Sanjaykumar Dave, 2021. "Analysis of taste heterogeneity in commuters travel decisions using joint parking and mode choice model: A case from urban India," Papers 2109.01045, arXiv.org, revised Oct 2023.
    15. Beili Mu & Zhengyu Zhang, 2018. "Identification and estimation of heteroscedastic binary choice models with endogenous dummy regressors," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 218-246, June.
    16. Chandra R. Bhat, 2000. "Incorporating Observed and Unobserved Heterogeneity in Urban Work Travel Mode Choice Modeling," Transportation Science, INFORMS, vol. 34(2), pages 228-238, May.
    17. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    18. Dias, Charitha & Abdullah, Muhammad & Lovreglio, Ruggiero & Sachchithanantham, Sumana & Rekatheeban, Markkandu & Sathyaprasad, I.M.S., 2022. "Exploring home-to-school trip mode choices in Kandy, Sri Lanka," Journal of Transport Geography, Elsevier, vol. 99(C).
    19. Parmar, Janak & Saiyed, Gulnazbanu & Dave, Sanjaykumar, 2023. "Analysis of taste heterogeneity in commuters’ travel decisions using joint parking– and mode–choice model: A case from urban India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    20. Masoumi, Houshmand E., 2019. "A discrete choice analysis of transport mode choice causality and perceived barriers of sustainable mobility in the MENA region," Transport Policy, Elsevier, vol. 79(C), pages 37-53.
    21. Kala Seetharam Sridhar & Shivakumar Nayka, 2022. "Determinants of Commute Time in an Indian City," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 16(1), pages 49-75, February.
    22. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    23. Greene, William H. & Hensher, David A. & Rose, John, 2006. "Accounting for heterogeneity in the variance of unobserved effects in mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 75-92, January.
    24. Patil, Priyadarshan N. & Dubey, Subodh K. & Pinjari, Abdul R. & Cherchi, Elisabetta & Daziano, Ricardo & Bhat, Chandra R., 2017. "Simulation evaluation of emerging estimation techniques for multinomial probit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 9-20.
    25. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    26. Manuel Denzer, 2019. "Estimating Causal Effects in Binary Response Models with Binary Endogenous Explanatory Variables - A Comparison of Possible Estimators," Working Papers 1916, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    27. Ke Wang & Chandra R. Bhat & Xin Ye, 2023. "A multinomial probit analysis of shanghai commute mode choice," Transportation, Springer, vol. 50(4), pages 1471-1495, August.
    28. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    29. Kala Seetharam Sridhar & Shivakumar Nayka, "undated". "Determinants of Commute Time in an Indian City," Margin-The Journal of Applied Economic Research v:16:y:2022:i:2022-1:p:49, National Council of Applied Economic Research.
    30. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    31. Beili Mu & Zhengyu Zhang, 2018. "Identification and estimation of heteroscedastic binary choice models with endogenous dummy regressors," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 218-246.
    32. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    33. Bhat, Chandra R., 2018. "New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 238-256.
    34. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    35. Balcombe, Kelvin & Chalak, Ali & Fraser, Iain, 2009. "Model selection for the mixed logit with Bayesian estimation," Journal of Environmental Economics and Management, Elsevier, vol. 57(2), pages 226-237, March.
    36. Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
    37. Astroza, Sebastian & Bhat, Aarti C., 2016. "On allowing a general form for unobserved heterogeneity in the multiple discrete–continuous probit model: Formulation and application to tourism travelAuthor-Name: Bhat, Chandra R," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 223-249.
    38. Börjesson, Maria & Asplund, Disa & Hamilton, Carl, 2023. "Optimal kilometre tax for electric vehicles," Transport Policy, Elsevier, vol. 134(C), pages 52-64.
    39. Chandra R. Bhat & Patrícia S. Lavieri, 2018. "A new mixed MNP model accommodating a variety of dependent non-normal coefficient distributions," Theory and Decision, Springer, vol. 84(2), pages 239-275, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    2. Bhat, Chandra R., 2024. "Transformation-based flexible error structures for choice modeling," Journal of choice modelling, Elsevier, vol. 53(C).
    3. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    4. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    5. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    6. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    7. Ke Wang & Chandra R. Bhat & Xin Ye, 2023. "A multinomial probit analysis of shanghai commute mode choice," Transportation, Springer, vol. 50(4), pages 1471-1495, August.
    8. Yang, Chih-Wen & Sung, Yen-Ching, 2010. "Constructing a mixed-logit model with market positioning to analyze the effects of new mode introduction," Journal of Transport Geography, Elsevier, vol. 18(1), pages 175-182.
    9. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).
    10. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    11. Biswas, Mehek & Bhat, Chandra R. & Pinjari, Abdul Rawoof, 2024. "The use of pooled RP-SP choice data to simultaneously identify alternative attributes and random coefficients on those attributes," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    12. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    13. Chandra R. Bhat & Patrícia S. Lavieri, 2018. "A new mixed MNP model accommodating a variety of dependent non-normal coefficient distributions," Theory and Decision, Springer, vol. 84(2), pages 239-275, March.
    14. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    15. Bansal, Prateek & Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H., 2020. "Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 124-142.
    16. Ke Wang & Xin Ye, 2021. "Development of alternative stochastic frontier models for estimating time-space prism vertices," Transportation, Springer, vol. 48(2), pages 773-807, April.
    17. Campbell, Danny & Hutchinson, W. George & Scarpa, Riccardo, 2006. "Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes: Evidence from the Rural Environment Protection Scheme in Irel," Sustainability Indicators and Environmental Valuation Working Papers 12220, Fondazione Eni Enrico Mattei (FEEM).
    18. Campbell, Danny & Hutchinson, W. George & Scarpa, Riccardo, 2006. "Lexicographic Preferences in Discrete Choice Experiments: Consequences on Individual-Specific Willingness to Pay Estimates," Sustainability Indicators and Environmental Valuation Working Papers 12224, Fondazione Eni Enrico Mattei (FEEM).
    19. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Comparison of parametric and semiparametric representations of unobserved preference heterogeneity in logit models," Journal of choice modelling, Elsevier, vol. 27(C), pages 97-113.
    20. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:195:y:2025:i:c:s0191261525000359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.