IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v173y2023icp1-30.html
   My bibliography  Save this article

Mechanism design for Mobility-as-a-Service platform considering travelers’ strategic behavior and multidimensional requirements

Author

Listed:
  • Ding, Xiaoshu
  • Qi, Qi
  • Jian, Sisi
  • Yang, Hai

Abstract

Mobility-as-a-Service (MaaS) is an emerging transport model which provides access to a combination of travel modes through a single platform. A MaaS operator sits between travelers and transport service providers (TSPs), acting as a broker who purchases mobility resources from individual TSPs, constructs seamless transport services, and then sells them to travelers in response to their demand. To ensure the sustainability of such platforms, the key challenge lies in matching travelers to TSPs so that travelers’ individual needs are satisfied, TSPs gain nonnegative profits and system efficiency is achieved. To solve this matching and pricing problem, travelers’ truthful valuations and travel requirements are needed, while such information is usually unknown to operators beforehand. In this study, we develop an auction-based online mobility resource allocation and pricing mechanism to solve this problem, taking into account travelers’ strategic behavior. We first propose an offline (static) mechanism using a Vickrey–Clarke–Groves (VCG) based pricing scheme to ensure incentive compatibility, individual rationality, and system efficiency. We then develop an online mechanism based on the dynamic learning algorithm to obtain the near-optimal solution and compare it to a customized greedy based algorithm. We compare both online mechanisms to the offline VCG based mechanism and theoretically prove the competitive ratios. The efficiency and performance of the proposed mechanisms are demonstrated through a numerical study.

Suggested Citation

  • Ding, Xiaoshu & Qi, Qi & Jian, Sisi & Yang, Hai, 2023. "Mechanism design for Mobility-as-a-Service platform considering travelers’ strategic behavior and multidimensional requirements," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 1-30.
  • Handle: RePEc:eee:transb:v:173:y:2023:i:c:p:1-30
    DOI: 10.1016/j.trb.2023.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152300067X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian, Xinwu & Ukkusuri, Satish V., 2017. "Taxi market equilibrium with third-party hailing service," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 43-63.
    2. Xiaolei Wang & Hai Yang & Daoli Zhu, 2018. "Driver-Rider Cost-Sharing Strategies and Equilibria in a Ridesharing Program," Transportation Science, INFORMS, vol. 52(4), pages 868-881, August.
    3. Nisan, Noam & Ronen, Amir, 2001. "Algorithmic Mechanism Design," Games and Economic Behavior, Elsevier, vol. 35(1-2), pages 166-196, April.
    4. Myerson, Roger B, 1979. "Incentive Compatibility and the Bargaining Problem," Econometrica, Econometric Society, vol. 47(1), pages 61-73, January.
    5. Myerson, Roger B. & Satterthwaite, Mark A., 1983. "Efficient mechanisms for bilateral trading," Journal of Economic Theory, Elsevier, vol. 29(2), pages 265-281, April.
    6. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    7. Ho, Chinh Q. & Hensher, David A. & Mulley, Corinne & Wong, Yale Z., 2018. "Potential uptake and willingness-to-pay for Mobility as a Service (MaaS): A stated choice study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 302-318.
    8. David A. Hensher & Sampo Hietanen, 2023. "Mobility as a feature (MaaF): rethinking the focus of the second generation of mobility as a service (MaaS)," Transport Reviews, Taylor & Francis Journals, vol. 43(3), pages 325-329, May.
    9. Edward Clarke, 1971. "Multipart pricing of public goods," Public Choice, Springer, vol. 11(1), pages 17-33, September.
    10. Trivella, Alessio & Corman, Francesco & Koza, David F. & Pisinger, David, 2021. "The multi-commodity network flow problem with soft transit time constraints: Application to liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    11. Di, Xuan & Ban, Xuegang Jeff, 2019. "A unified equilibrium framework of new shared mobility systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 50-78.
    12. Bian, Zheyong & Liu, Xiang & Bai, Yun, 2020. "Mechanism design for on-demand first-mile ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 77-117.
    13. Theodoros P. Pantelidis & Joseph Y. J. Chow & Saeid Rasulkhani, 2019. "A many-to-many assignment game and stable outcome algorithm to evaluate collaborative Mobility-as-a-Service platforms," Papers 1911.04435, arXiv.org, revised Jun 2020.
    14. Melinda Matyas & Maria Kamargianni, 2019. "The potential of mobility as a service bundles as a mobility management tool," Transportation, Springer, vol. 46(5), pages 1951-1968, October.
    15. Jian, Sisi & Liu, Wei & Wang, Xiaolei & Yang, Hai & Waller, S. Travis, 2020. "On integrating carsharing and parking sharing services," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 19-44.
    16. William Vickrey, 1961. "Counterspeculation, Auctions, And Competitive Sealed Tenders," Journal of Finance, American Finance Association, vol. 16(1), pages 8-37, March.
    17. Xu, Su Xiu & Huang, George Q., 2013. "Transportation service procurement in periodic sealed double auctions with stochastic demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 136-160.
    18. Caiati, Valeria & Rasouli, Soora & Timmermans, Harry, 2020. "Bundling, pricing schemes and extra features preferences for mobility as a service: Sequential portfolio choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 123-148.
    19. Rasulkhani, Saeid & Chow, Joseph Y.J., 2019. "Route-cost-assignment with joint user and operator behavior as a many-to-one stable matching assignment game," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 60-81.
    20. Karlsson, I.C.M. & Mukhtar-Landgren, D. & Smith, G. & Koglin, T. & Kronsell, A. & Lund, E. & Sarasini, S. & Sochor, J., 2020. "Development and implementation of Mobility-as-a-Service – A qualitative study of barriers and enabling factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 283-295.
    21. Wong, Yale Z. & Hensher, David A. & Mulley, Corinne, 2020. "Mobility as a service (MaaS): Charting a future context," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 5-19.
    22. Mulley, Corinne & Nelson, John D. & Wright, Steve, 2018. "Community transport meets mobility as a service: On the road to a new a flexible future," Research in Transportation Economics, Elsevier, vol. 69(C), pages 583-591.
    23. Su Xiu Xu & George Q. Huang & Meng Cheng, 2017. "Truthful, Budget-Balanced Bundle Double Auctions for Carrier Collaboration," Transportation Science, INFORMS, vol. 51(4), pages 1365-1386, November.
    24. Rey, David & Levin, Michael W. & Dixit, Vinayak V., 2021. "Online incentive-compatible mechanisms for traffic intersection auctions," European Journal of Operational Research, Elsevier, vol. 293(1), pages 229-247.
    25. Xiao, Haohan & Xu, Meng & Gao, Ziyou, 2018. "Shared parking problem: A novel truthful double auction mechanism approach," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 40-69.
    26. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part I: Theoretical analysis in generalized scenarios," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 147-171.
    27. Yang, Hai & Wong, S. C., 1998. "A network model of urban taxi services," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 235-246, May.
    28. Smith, Göran & Hensher, David A., 2020. "Towards a framework for Mobility-as-a-Service policies," Transport Policy, Elsevier, vol. 89(C), pages 54-65.
    29. Hu, Shichun & Dessouky, Maged M. & Uhan, Nelson A. & Vayanos, Phebe, 2021. "Cost-sharing mechanism design for ride-sharing," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 410-434.
    30. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part II: Solution algorithm for large-scale problems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 172-192.
    31. Hai-Jun Huang & Hai Yang & Michael G.H. Bell, 2000. "The models and economics of carpools," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 34(1), pages 55-68.
    32. Pantelidis, Theodoros P. & Chow, Joseph Y.J. & Rasulkhani, Saeid, 2020. "A many-to-many assignment game and stable outcome algorithm to evaluate collaborative mobility-as-a-service platforms," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 79-100.
    33. Hensher, David A., 2017. "Future bus transport contracts under a mobility as a service (MaaS) regime in the digital age: Are they likely to change?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 86-96.
    34. Hirschhorn, Fabio & Paulsson, Alexander & Sørensen, Claus H. & Veeneman, Wijnand, 2019. "Public transport regimes and mobility as a service: Governance approaches in Amsterdam, Birmingham, and Helsinki," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 178-191.
    35. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    36. Xu, Su Xiu & Cheng, Meng & Huang, George Q., 2015. "Efficient intermodal transportation auctions for B2B e-commerce logistics with transaction costs," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 322-337.
    37. Xi, Haoning & Liu, Wei & Waller, S. Travis & Hensher, David A. & Kilby, Philip & Rey, David, 2023. "Incentive-compatible mechanisms for online resource allocation in Mobility-as-a-Service systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 119-147.
    38. Polydoropoulou, Amalia & Pagoni, Ioanna & Tsirimpa, Athena & Roumboutsos, Athena & Kamargianni, Maria & Tsouros, Ioannis, 2020. "Prototype business models for Mobility-as-a-Service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 149-162.
    39. Shipra Agrawal & Zizhuo Wang & Yinyu Ye, 2014. "A Dynamic Near-Optimal Algorithm for Online Linear Programming," Operations Research, INFORMS, vol. 62(4), pages 876-890, August.
    40. Alonso-González, María J. & Hoogendoorn-Lanser, Sascha & van Oort, Niels & Cats, Oded & Hoogendoorn, Serge, 2020. "Drivers and barriers in adopting Mobility as a Service (MaaS) – A latent class cluster analysis of attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 378-401.
    41. Huang, George Q. & Xu, Su Xiu, 2013. "Truthful multi-unit transportation procurement auctions for logistics e-marketplaces," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 127-148.
    42. Groves, Theodore, 1973. "Incentives in Teams," Econometrica, Econometric Society, vol. 41(4), pages 617-631, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi, Haoning & Liu, Wei & Waller, S. Travis & Hensher, David A. & Kilby, Philip & Rey, David, 2023. "Incentive-compatible mechanisms for online resource allocation in Mobility-as-a-Service systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 119-147.
    2. Tafreshian, Amirmahdi & Masoud, Neda, 2022. "A truthful subsidy scheme for a peer-to-peer ridesharing market with incomplete information," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 130-161.
    3. Bian, Zheyong & Liu, Xiang & Bai, Yun, 2020. "Mechanism design for on-demand first-mile ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 77-117.
    4. Yu, Hao & Huang, Min & Chao, Xiuli & Yue, Xiaohang, 2022. "Truthful multi-attribute multi-unit double auctions for B2B e-commerce logistics service transactions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Reck, Daniel J. & Hensher, David A. & Ho, Chinh Q., 2020. "MaaS bundle design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 485-501.
    6. Iria Lopez-Carreiro & Andres Monzon & Elena Lopez, 2023. "MaaS Implications in the Smart City: A Multi-Stakeholder Approach," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    7. Zipeng Zhang & Ning Zhang, 2021. "A Novel Development Scheme of Mobility as a Service: Can It Provide a Sustainable Environment for China?," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    8. Dadashzadeh, Nima & Woods, Lee & Ouelhadj, Djamila & Thomopoulos, Nikolas & Kamargianni, Maria & Antoniou, Constantinos, 2022. "Mobility as a Service Inclusion Index (MaaSINI): Evaluation of inclusivity in MaaS systems and policy recommendations," Transport Policy, Elsevier, vol. 127(C), pages 191-202.
    9. Liang, Renchao & Wang, Junwei & Huang, Min & Jiang, Zhong-Zhong, 2020. "Truthful auctions for e-market logistics services procurement with quantity discounts," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 165-180.
    10. Su Xiu Xu & George Q. Huang & Meng Cheng, 2017. "Truthful, Budget-Balanced Bundle Double Auctions for Carrier Collaboration," Transportation Science, INFORMS, vol. 51(4), pages 1365-1386, November.
    11. van den Berg, Vincent A.C. & Meurs, Henk & Verhoef, Erik T., 2022. "Business models for Mobility as an Service (MaaS)," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 203-229.
    12. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part I: Theoretical analysis in generalized scenarios," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 147-171.
    13. Smith, Göran & Sørensen, Claus Hedegaard, 2023. "Public-private MaaS: Unchallenged assumptions and issues of conflict in Sweden," Research in Transportation Economics, Elsevier, vol. 99(C).
    14. Ruijie Li & Yu (Marco) Nie & Xiaobo Liu, 2020. "Pricing Carpool Rides Based on Schedule Displacement," Transportation Science, INFORMS, vol. 54(4), pages 1134-1152, July.
    15. Kayikci, Yasanur & Kabadurmus, Ozgur, 2022. "Barriers to the adoption of the mobility-as-a-service concept: The case of Istanbul, a large emerging metropolis," Transport Policy, Elsevier, vol. 129(C), pages 219-236.
    16. Paula Brezovec & Nina Hampl, 2021. "Electric Vehicles Ready for Breakthrough in MaaS? Consumer Adoption of E-Car Sharing and E-Scooter Sharing as a Part of Mobility-as-a-Service (MaaS)," Energies, MDPI, vol. 14(4), pages 1-25, February.
    17. Xiao, Haohan & Xu, Meng & Gao, Ziyou, 2018. "Shared parking problem: A novel truthful double auction mechanism approach," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 40-69.
    18. Kong, Xiang T.R. & Kang, Kai & Zhong, Ray Y. & Luo, Hao & Xu, Su Xiu, 2021. "Cyber physical system-enabled on-demand logistics trading," International Journal of Production Economics, Elsevier, vol. 233(C).
    19. Bierbrauer, Felix & Netzer, Nick, 2016. "Mechanism design and intentions," Journal of Economic Theory, Elsevier, vol. 163(C), pages 557-603.
    20. Steven J. Brams & Todd R. Kaplan & D. Marc Kilgour, 2015. "A Simple Bargaining Mechanism that Elicits Truthful Reservation Prices," Group Decision and Negotiation, Springer, vol. 24(3), pages 401-413, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:173:y:2023:i:c:p:1-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.