IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v33y1999i1p19-45.html
   My bibliography  Save this article

Simulated annealing for the multi-objective aircrew rostering problem

Author

Listed:
  • Lucic, Panta
  • Teodorovic, Dusan

Abstract

The aircrew rostering problem entails the assignment of crew members to planned rotations. Airline companies have the monthly task of constructing personalized monthly schedules (rosters). The paper attempts to solve the aircrew rostering problem as a multi-objective optimization problem, thus constructing personalized monthly schedules on the basis of several criteria. The proposed algorithm to solve the aircrew rostering problem contains two steps. The first step uses the 'pilot-by-pilot' heuristic algorithm to generate an initial feasible solution. The second step uses the simulated annealing technique for multi-objective optimization problems to improve the solution obtained in the first step. The paper develops two models to improve the initial solution obtained in the first step. The developed models are tested on a numerical example whose dimensions are characteristic of small- and medium-sized airline carriers. The other examples on which the models are tested are randomly generated. ©

Suggested Citation

  • Lucic, Panta & Teodorovic, Dusan, 1999. "Simulated annealing for the multi-objective aircrew rostering problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(1), pages 19-45, January.
  • Handle: RePEc:eee:transa:v:33:y:1999:i:1:p:19-45
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(98)00021-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eglese, R. W., 1990. "Simulated annealing: A tool for operational research," European Journal of Operational Research, Elsevier, vol. 46(3), pages 271-281, June.
    2. Michael Ball & Anito Roberts, 1985. "A Graph Partitioning Approach to Airline Crew Scheduling," Transportation Science, INFORMS, vol. 19(2), pages 107-126, May.
    3. J. P. Arabeyre & J. Fearnley & F. C. Steiger & W. Teather, 1969. "The Airline Crew Scheduling Problem: A Survey," Transportation Science, INFORMS, vol. 3(2), pages 140-163, May.
    4. Bernardo Nicoletti, 1975. "Automatic Crew Rostering," Transportation Science, INFORMS, vol. 9(1), pages 33-42, February.
    5. Jerrold Rubin, 1973. "A Technique for the Solution of Massive Set Covering Problems, with Application to Airline Crew Scheduling," Transportation Science, INFORMS, vol. 7(1), pages 34-48, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huseyin Onur Mete & Zelda B. Zabinsky, 2014. "Multiobjective Interacting Particle Algorithm for Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 500-513, August.
    2. Salazar-González, Juan-José, 2014. "Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier," Omega, Elsevier, vol. 43(C), pages 71-82.
    3. Yan, Shangyao & Yang, Ta-Hui & Chen, Hsuan-Hung, 2004. "Airline short-term maintenance manpower supply planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(9-10), pages 615-642.
    4. Jesica Armas & Luis Cadarso & Angel A. Juan & Javier Faulin, 2017. "A multi-start randomized heuristic for real-life crew rostering problems in airlines with work-balancing goals," Annals of Operations Research, Springer, vol. 258(2), pages 825-848, November.
    5. Adam Farmer & Jeffrey S. Smith & Luke T. Miller, 2007. "Scheduling Umpire Crews for Professional Tennis Tournaments," Interfaces, INFORMS, vol. 37(2), pages 187-196, April.
    6. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    7. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    8. Nishi, Tatsushi & Sugiyama, Taichi & Inuiguchi, Masahiro, 2014. "Two-level decomposition algorithm for crew rostering problems with fair working condition," European Journal of Operational Research, Elsevier, vol. 237(2), pages 465-473.
    9. Jones, D. F. & Mirrazavi, S. K. & Tamiz, M., 2002. "Multi-objective meta-heuristics: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 137(1), pages 1-9, February.
    10. Eltoukhy, Abdelrahman E.E. & Wang, Z.X. & Chan, Felix T.S. & Fu, X., 2019. "Data analytics in managing aircraft routing and maintenance staffing with price competition by a Stackelberg-Nash game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 143-168.
    11. Margarida Moz & Ana Respício & Margarida Vaz Pato, 2009. "Bi-objective evolutionary heuristics for bus driver rostering," Public Transport, Springer, vol. 1(3), pages 189-210, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desaulniers, G. & Desrosiers, J. & Dumas, Y. & Marc, S. & Rioux, B. & Solomon, M. M. & Soumis, F., 1997. "Crew pairing at Air France," European Journal of Operational Research, Elsevier, vol. 97(2), pages 245-259, March.
    2. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    3. Balaji Gopalakrishnan & Ellis. Johnson, 2005. "Airline Crew Scheduling: State-of-the-Art," Annals of Operations Research, Springer, vol. 140(1), pages 305-337, November.
    4. Gang Yu & Michael Argüello & Gao Song & Sandra M. McCowan & Anna White, 2003. "A New Era for Crew Recovery at Continental Airlines," Interfaces, INFORMS, vol. 33(1), pages 5-22, February.
    5. Guo, Yufeng & Mellouli, Taieb & Suhl, Leena & Thiel, Markus P., 2006. "A partially integrated airline crew scheduling approach with time-dependent crew capacities and multiple home bases," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1169-1181, June.
    6. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    7. Yan, Shangyao & Chang, Jei-Chi, 2002. "Airline cockpit crew scheduling," European Journal of Operational Research, Elsevier, vol. 136(3), pages 501-511, February.
    8. Beasley, J. E. & Cao, B., 1996. "A tree search algorithm for the crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 94(3), pages 517-526, November.
    9. Joyce W. Yen & John R. Birge, 2006. "A Stochastic Programming Approach to the Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 40(1), pages 3-14, February.
    10. Maria da Conceição Cunha, 1999. "On Solving Aquifer Management Problems with Simulated Annealing Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(3), pages 153-170, June.
    11. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    12. Meyr, H., 2000. "Simultaneous lotsizing and scheduling by combining local search with dual reoptimization," European Journal of Operational Research, Elsevier, vol. 120(2), pages 311-326, January.
    13. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    14. H. A. J. Crauwels & C. N. Potts & L. N. Van Wassenhove, 1998. "Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 341-350, August.
    15. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    16. M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
    17. Jesica Armas & Luis Cadarso & Angel A. Juan & Javier Faulin, 2017. "A multi-start randomized heuristic for real-life crew rostering problems in airlines with work-balancing goals," Annals of Operations Research, Springer, vol. 258(2), pages 825-848, November.
    18. Fuentes, Manuel & Cadarso, Luis & Marín, Ángel, 2019. "A hybrid model for crew scheduling in rail rapid transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 248-265.
    19. Ramesh Teegavarapu & Slobodan Simonovic, 2002. "Optimal Operation of Reservoir Systems using Simulated Annealing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(5), pages 401-428, October.
    20. Samer Hanoun & Asim Bhatti & Doug Creighton & Saeid Nahavandi & Phillip Crothers & Celeste Gloria Esparza, 2016. "Target coverage in camera networks for manufacturing workplaces," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1221-1235, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:33:y:1999:i:1:p:19-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.