IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v163y2025icp36-49.html

Spatial evolutionary public goods game theory applied to optimal resource allocation and defense strategies in herbaceous plants

Author

Listed:
  • Creagar, Molly
  • Rebarber, Richard
  • Tenhumberg, Brigitte

Abstract

Empirical evidence suggests that the attractiveness of a plant to herbivores can be affected by the investment in defense by neighboring plants, as well as investment in defense by the focal plant. Thus, the payoff for allocating to defense may not only be influenced by the frequency and intensity of herbivory but also by defense strategies employed by other plants in the environment. We use a combination of spatial evolutionary game theory and stochastic dynamic programming to predict the proportion of plants in the population investing in defense (cooperators) and the proportion of plants that do not (defectors). Our model accounts for metabolic costs of maintenance of stored resources when predicting optimal resource allocation to growth, reproduction, and storage; this cost is not commonly accounted for in previous models. For both annual and perennial plants, our model predicts an evolutionarily stable proportion of cooperators and defectors (mixed stable strategy), but the proportion of cooperators is higher in a population of perennial plants than in a population of annual plants. We also show that including a metabolic cost of maintaining stored resources does not change the proportion of cooperators but does decrease plant fitness and allocation to overwinter storage.

Suggested Citation

  • Creagar, Molly & Rebarber, Richard & Tenhumberg, Brigitte, 2025. "Spatial evolutionary public goods game theory applied to optimal resource allocation and defense strategies in herbaceous plants," Theoretical Population Biology, Elsevier, vol. 163(C), pages 36-49.
  • Handle: RePEc:eee:thpobi:v:163:y:2025:i:c:p:36-49
    DOI: 10.1016/j.tpb.2025.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580925000115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2025.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    2. Geoffrey B. West & James H. Brown & Brian J. Enquist, 2001. "A general model for ontogenetic growth," Nature, Nature, vol. 413(6856), pages 628-631, October.
    3. Binmore, Ken, 2007. "Playing for Real: A Text on Game Theory," OUP Catalogue, Oxford University Press, number 9780195300574.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Bernhard & Marc Deschamps, 2017. "Kalman on dynamics and contro, Linear System Theory, Optimal Control, and Filter," Working Papers 2017-10, CRESE.
    2. Jones, Randall E. & Cacho, Oscar J., 2000. "A Dynamic Optimisation Model of Weed Control," 2000 Conference (44th), January 23-25, 2000, Sydney, Australia 123685, Australian Agricultural and Resource Economics Society.
    3. Laruelle, Annick & Valenciano, Federico, 2008. "Noncooperative foundations of bargaining power in committees and the Shapley-Shubik index," Games and Economic Behavior, Elsevier, vol. 63(1), pages 341-353, May.
    4. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    5. Pam Norton & Ravi Phatarfod, 2008. "Optimal Strategies In One-Day Cricket," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(04), pages 495-511.
    6. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    7. Tan, Madeleine Sui-Lay, 2016. "Policy coordination among the ASEAN-5: A global VAR analysis," Journal of Asian Economics, Elsevier, vol. 44(C), pages 20-40.
    8. D. W. K. Yeung, 2008. "Dynamically Consistent Solution For A Pollution Management Game In Collaborative Abatement With Uncertain Future Payoffs," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 517-538.
    9. Korfhage, Thorben & Fischer-Weckemann, Björn, 2024. "Long-run consequences of informal elderly care and implications of public long-term care insurance," Journal of Health Economics, Elsevier, vol. 96(C).
    10. Barberis, L. & Condat, C.A., 2012. "Describing interactive growth using vector universalities," Ecological Modelling, Elsevier, vol. 227(C), pages 56-63.
    11. Crutchfield, Stephen R. & Brazee, Richard J., "undated". "An Integrated Model of Surface and Ground Water Quality," 1990 Annual meeting, August 5-8, Vancouver, Canada 271011, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Sigourney, Douglas B. & Munch, Stephan B. & Letcher, Benjamin H., 2012. "Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth," Ecological Modelling, Elsevier, vol. 247(C), pages 125-134.
    13. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    14. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    15. Carl-Johan Dalgaard & Holger Strulik, 2014. "Physiological Constraints and Comparative Economic Development," Discussion Papers 14-21, University of Copenhagen. Department of Economics.
    16. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    17. Eric D. Gould, 2008. "Marriage and Career: The Dynamic Decisions of Young Men," Journal of Human Capital, University of Chicago Press, vol. 2(4), pages 337-378.
    18. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    19. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    20. Dmitri Blueschke & Ivan Savin, 2015. "No such thing like perfect hammer: comparing different objective function specifications for optimal control," Jena Economics Research Papers 2015-005, Friedrich-Schiller-University Jena.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:163:y:2025:i:c:p:36-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/theoretical-population-biology .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.