IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v78y2024ics0160791x24001799.html
   My bibliography  Save this article

Evolution of technology cooperation networks based on networked evolutionary games model: An industrial heterogeneity perspective

Author

Listed:
  • Yang, Xiaomeng
  • Kong, Lingkai
  • Qu, Sen

Abstract

The present paper investigates the evolution of technology cooperation networks in different industries and the factors influencing them. Based on the cooperative patent data, the technology cooperation networks of the steel, pharmaceutical and solid waste treatment industries are constructed, and the networked evolutionary games model is proposed to study the evolution process of the technology cooperation networks. The effect of cooperation costs, technology spillover, and government support on the evolution of technology cooperation networks is revealed. The results show that reducing cooperation costs and technology spillover and increasing government support can improve the cooperation level and efficiency of technology cooperation networks. Furthermore, there are differences in the impact of these three factors on the evolution of technology cooperation networks in the steel, pharmaceutical, and solid waste treatment industries. This study broadens the research perspective on the evolution of technology cooperation networks and provides practical references for different industries to determine their technical cooperation strategies.

Suggested Citation

  • Yang, Xiaomeng & Kong, Lingkai & Qu, Sen, 2024. "Evolution of technology cooperation networks based on networked evolutionary games model: An industrial heterogeneity perspective," Technology in Society, Elsevier, vol. 78(C).
  • Handle: RePEc:eee:teinso:v:78:y:2024:i:c:s0160791x24001799
    DOI: 10.1016/j.techsoc.2024.102631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X24001799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2024.102631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Szolnoki & M. Perc & G. Szabó, 2008. "Diversity of reproduction rate supports cooperation in the prisoner's dilemma game on complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 505-509, February.
    2. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    3. Deng, Yunsheng & Zhang, Jihui, 2021. "Memory-based prisoner's dilemma game with history optimal strategy learning promotes cooperation on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    4. Su, Qi & Li, Aming & Wang, Long, 2017. "Spatial structure favors cooperative behavior in the snowdrift game with multiple interactive dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 299-306.
    5. Liu, Mengmeng & Ma, Yinghong & Liu, Zhiyuan & You, Xuemei, 2017. "An IUR evolutionary game model on the patent cooperate of Shandong China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 11-23.
    6. Demirel, Pelin & Kesidou, Effie, 2011. "Stimulating different types of eco-innovation in the UK: Government policies and firm motivations," Ecological Economics, Elsevier, vol. 70(8), pages 1546-1557, June.
    7. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    8. Aming Li & Lei Zhou & Qi Su & Sean P. Cornelius & Yang-Yu Liu & Long Wang & Simon A. Levin, 2020. "Evolution of cooperation on temporal networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    9. Salehi, Mostafa & Rabiee, Hamid R. & Jalili, Mahdi, 2010. "Motif structure and cooperation in real-world complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5521-5529.
    10. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    11. Chao Liu & Hexin Wang & Yu Dai, 2023. "Sustainable Cooperation between Schools, Enterprises, and Government: An Evolutionary Game Theory Analysis," Sustainability, MDPI, vol. 15(18), pages 1-12, September.
    12. Tanimoto, Jun, 2013. "Coevolutionary, coexisting learning and teaching agents model for prisoner’s dilemma games enhancing cooperation with assortative heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2955-2964.
    13. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    14. Akçomak, I. Semih & ter Weel, Bas, 2009. "Social capital, innovation and growth: Evidence from Europe," European Economic Review, Elsevier, vol. 53(5), pages 544-567, July.
    15. Li, Jingjing & Jiao, Jianling & Tang, Yunshu, 2019. "An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network," Energy Policy, Elsevier, vol. 129(C), pages 1-12.
    16. D’Ignazio, Alessio & Giovannetti, Emanuele, 2015. "Predicting internet commercial connectivity wars: The impact of trust and operators’ asymmetry," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1127-1137.
    17. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    18. Yang Song & Wolfram Elsner & Zhiyuan Zhang & Ron Berger, 2020. "Collaborative innovation and policy support: the emergence of trilateral networks," Applied Economics, Taylor & Francis Journals, vol. 52(34), pages 3651-3668, July.
    19. F. Fu & L.-H. Liu & L. Wang, 2007. "Evolutionary Prisoner's Dilemma on heterogeneous Newman-Watts small-world network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 367-372, April.
    20. Weiwei Liu & Yuan Tao & Zhile Yang & Kexin Bi, 2019. "Exploring and Visualizing the Patent Collaboration Network: A Case Study of Smart Grid Field in China," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    21. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    22. Zhang, Liming & Huang, Changwei & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2021. "Cooperation guided by imitation, aspiration and conformity-driven dynamics in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    23. Xiaochen Wang & Lei Zhou & Alex McAvoy & Aming Li, 2023. "Imitation dynamics on networks with incomplete information," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    24. Wang, Qiuling & Meng, Haoran & Gao, Bo, 2019. "Spontaneous punishment promotes cooperation in public good game," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 183-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "The impact of current and historical reputation with non-uniform change on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Wang, Qiuling & Meng, Haoran & Gao, Bo, 2019. "Spontaneous punishment promotes cooperation in public good game," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 183-187.
    4. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2024. "The impact of reputation-based heterogeneous evaluation and learning on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Wang, Qiuling & Ren, Xiaobin & Gao, Bo & Wang, Jiaqian, 2020. "Heterogeneity reproductive ability promotes cooperation in spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Quan, Ji & Dong, Xu & Wang, Xianjia, 2022. "Rational conformity behavior in social learning promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    7. Li, Yan & Ye, Hang, 2015. "Effect of migration based on strategy and cost on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 156-165.
    8. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    9. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    10. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    11. Yu, Fengyuan & Wang, Jianwei & Chen, Wei & He, Jialu, 2023. "Increased cooperation potential and risk under suppressed strategy differentiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    12. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    13. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Liu, Dan & Gao, Li, 2018. "Multi-games on interdependent networks and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 83-90.
    14. Qian, Jia-Li & Zhou, Yin-Xiang & Hao, Qing-Yi, 2024. "The emergence of cooperative behavior based on random payoff and heterogeneity of concerning social image," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    15. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    16. Luo, Yijun & Huang, Changwei & Han, Wenchen, 2024. "The evolution of cooperation and global synchronization in the evolutionary Kuramoto dilemma combined with the prisoner's dilemma," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    17. Jin, Jiahua & Chu, Chen & Shen, Chen & Guo, Hao & Geng, Yini & Jia, Danyang & Shi, Lei, 2018. "Heterogeneous fitness promotes cooperation in the spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 141-146.
    18. Ye, Tianbo & Li, Pengcheng & Fan, Suohai, 2024. "Preferential selection based on aspiration and memory in spatial evolutionary prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).
    19. Wang, Xu-Wen & Nie, Sen & Jiang, Luo-Luo & Wang, Bing-Hong & Chen, Shi-Ming, 2017. "Role of delay-based reward in the spatial cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 153-158.
    20. Yan, Zeyuan & Zhao, Hui & Liang, Shu & Li, Li & Song, Yanjie, 2024. "Inter-layer feedback mechanism with reinforcement learning boosts the evolution of cooperation in multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:78:y:2024:i:c:s0160791x24001799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.