IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v594y2022ics0378437122001133.html
   My bibliography  Save this article

Impact of resource-based conditional interaction on cooperation in spatial social dilemmas

Author

Listed:
  • Li, Xiaopeng
  • Han, Weiwei
  • Yang, Wenjun
  • Wang, Juan
  • Xia, Chengyi
  • Li, Hui-jia
  • Shi, Yong

Abstract

Due to the contradiction between the finiteness of resources and people’s infinite demand for them, we cannot deny the impact of the limited resources on human behavior. To this end, we construct a novel resource-based conditional interaction model from a tiny perspective, in which not only can limited resources be redistributed among the population, but resources owned by players also affect whether they can interact with each other or not. To be specific, a player who successfully imitates his neighbor’s strategy will have to pay ɛ proportion of his resources to the opponent as the learning cost. In addition, if and only if the resource difference between the focal player x and one of his neighbors y is within an acceptable tolerance interval τ, they will indisputably interact with each other. We mainly resort to the prisoner’s dilemma game and asynchronous strategy update to verify the effectiveness of the model. By resorting to extensive Monte Carlo simulations, we find that there exists an optimal acceptable tolerance interval τ, varying with the value of cost-to-benefit ratio u, to make the promotion of cooperation the most obvious. We also confirm that players’ irrational behavior can be influenced by this resource-based partner selection. However, if we introduce one kind of minimal resource protection mechanism into our proposed model, the level of cooperation cannot be further elevated, or even be hindered when compared with the case without the minimal resource protection mechanism. In the end, we further verify the robustness and effectiveness of the proposed model through other social dilemmas, network topologies, and synchronous strategy update pattern. To a certain extent, we wish that our efforts can wipe out some barriers for researching the evolution of cooperation within the selfish population.

Suggested Citation

  • Li, Xiaopeng & Han, Weiwei & Yang, Wenjun & Wang, Juan & Xia, Chengyi & Li, Hui-jia & Shi, Yong, 2022. "Impact of resource-based conditional interaction on cooperation in spatial social dilemmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
  • Handle: RePEc:eee:phsmap:v:594:y:2022:i:c:s0378437122001133
    DOI: 10.1016/j.physa.2022.127055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122001133
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Joseph Henrich, 2001. "In Search of Homo Economicus: Behavioral Experiments in 15 Small-Scale Societies," American Economic Review, American Economic Association, vol. 91(2), pages 73-78, May.
    3. Ádám Kun & Gergely Boza & István Scheuring, 2006. "Asynchronous snowdrift game with synergistic effect as a model of cooperation," Behavioral Ecology, International Society for Behavioral Ecology, vol. 17(4), pages 633-641, July.
    4. Wang, Bin & Kang, Wenjun & Sheng, Jinfang & Cheng, Lvhang & Hou, Zhengang, 2021. "Effects of trust-driven updating rule based on reputation in spatial prisoner’s dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    5. Aming Li & Lei Zhou & Qi Su & Sean P. Cornelius & Yang-Yu Liu & Long Wang & Simon A. Levin, 2020. "Evolution of cooperation on temporal networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Luo, Chao & Jiang, Zhipeng, 2017. "Coevolving allocation of resources and cooperation in spatial evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 47-57.
    7. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    8. Cui, Guang-Hai & Wang, Zhen & Yang, Yan-Cun & Tian, Sheng-Wen & Yue, Jun, 2018. "Heterogeneous game resource distributions promote cooperation in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1191-1200.
    9. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    10. Szolnoki, Attila & Chen, Xiaojie, 2020. "Blocking defector invasion by focusing on the most successful partner," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    11. Xiaojie Chen & Alana Schick & Michael Doebeli & Alistair Blachford & Long Wang, 2012. "Reputation-Based Conditional Interaction Supports Cooperation in Well-Mixed Prisoner’s Dilemmas," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-7, May.
    12. Deng, Xiao-Heng & Liu, Yi & Chen, Zhi-Gang, 2010. "Memory-based evolutionary game on small-world network with tunable heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5173-5181.
    13. Wang, Si-Yi & Liu, Yan-Ping & Zhang, Feng & Wang, Rui-Wu, 2021. "Super-rational aspiration induced strategy updating promotes cooperation in the asymmetric prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    14. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    15. Jian, Qing & Li, Xiaopeng & Wang, Juan & Xia, Chengyi, 2021. "Impact of reputation assortment on tag-mediated altruistic behaviors in the spatial lattice," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    16. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
    17. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    18. Marc-Lluís Vives & Oriel FeldmanHall, 2018. "Tolerance to ambiguous uncertainty predicts prosocial behavior," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    19. Stojkoski, Viktor & Karbevski, Marko & Utkovski, Zoran & Basnarkov, Lasko & Kocarev, Ljupco, 2021. "Evolution of cooperation in networked heterogeneous fluctuating environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    20. Zhang, Liming & Huang, Changwei & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2021. "Cooperation guided by imitation, aspiration and conformity-driven dynamics in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    21. Laura Hindersin & Arne Traulsen, 2015. "Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-14, November.
    22. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
    23. Mohammad Salahshour, 2021. "Freedom to choose between public resources promotes cooperation," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaopeng Li & Zhonglin Wang & Jiuqiang Liu & Guihai Yu, 2023. "The Sense of Cooperation on Interdependent Networks Inspired by Influence-Based Self-Organization," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    2. Gao, Liyan & Pan, Qiuhui & He, Mingfeng, 2023. "Impact of peer pressure on the evolution of cooperation in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Guan, Kaixuan & Chen, Yuyou & Zheng, Wanjun & Zeng, Lulu & Ye, Hang, 2022. "Costly signals can facilitate cooperation and punishment in the prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    4. Quan, Ji & Yu, Junyu & Li, Xia & Wang, Xianjia, 2023. "Conditional switching between social excluders and loners promotes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Wang, Jianwei & Xu, Wenshu & Zhang, Xingjian & Zhao, Nianxuan & Yu, Fengyuan, 2023. "Redistribution based on willingness to cooperate promotes cooperation while intensifying equality in heterogeneous populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    6. Shi, Zhenyu & Wei, Wei & Zheng, Hongwei & Zheng, Zhiming, 2023. "Bidirectional supervision: An effective method to suppress corruption and defection under the third party punishment mechanism of donation games," Applied Mathematics and Computation, Elsevier, vol. 450(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qin & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of quasi-cooperative strategy on social dilemma evolution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Ma, Yin-Jie & Jiang, Zhi-Qiang & Podobnik, Boris, 2022. "Predictability of players’ actions as a mechanism to boost cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Zheng, Junjun & He, Yujie & Ren, Tianyu & Huang, Yongchao, 2022. "Evolution of cooperation in public goods games with segregated networks and periodic invasion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    5. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Li, Dandan & Sun, Xiaoxiao & He, Youxin & Han, Dun, 2022. "On prisoner’s dilemma game with psychological bias and memory learning," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    7. He, Jialu & Wang, Jianwei & Yu, Fengyuan & Chen, Wei & Li, Bofan, 2022. "The slow but persistent self-improvement boosts group cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    8. Wang, Chaoqian & Huang, Chaochao, 2022. "Between local and global strategy updating in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    9. Chu, Chen & Cui, Simin & Yuan, Zheng & Yu, Chunbin, 2022. "A win-stay-lose-learn mechanism based on aspiration can promote cooperation in a multigame," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Han, Weiwei & Zhang, Zhipeng & Sun, Junqing & Xia, Chengyi, 2022. "Role of reputation constraints in the spatial public goods game with second-order reputation evaluation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    12. Sun, Jiaqin & Fan, Ruguo & Luo, Ming & Zhang, Yingqing & Dong, Lili, 2018. "The evolution of cooperation in spatial prisoner’s dilemma game with dynamic relationship-based preferential learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 598-611.
    13. Zhu, Jiabao & Liu, Xingwen, 2021. "The number of strategy changes can be used to promote cooperation in spatial snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    14. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2021. "Small fraction of selective cooperators can elevate general wellbeing significantly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    15. Du, Chunpeng & Guo, Keyu & Lu, Yikang & Jin, Haoyu & Shi, Lei, 2023. "Aspiration driven exit-option resolves social dilemmas in the network," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    16. Pi, Bin & Li, Yuhan & Feng, Minyu, 2022. "An evolutionary game with conformists and profiteers regarding the memory mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    17. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Restoring spatial cooperation with myopic agents in a three-strategy social dilemma," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    18. Lu, Shounan & Zhu, Ge & Dai, Jianhua, 2023. "Promoting effect of adaptive interaction based on random neighbors to cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    19. Wang, Tao & Chen, Zhigang & Li, Kenli & Deng, Xiaoheng & Li, Deng, 2014. "Memory does not necessarily promote cooperation in dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 218-227.
    20. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:594:y:2022:i:c:s0378437122001133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.