IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v655y2024ics0378437124007234.html
   My bibliography  Save this article

Steering cooperation: Adversarial attacks on prisoner’s dilemma in complex networks

Author

Listed:
  • Takemoto, Kazuhiro

Abstract

This study examines the application of adversarial attack concepts to control the evolution of cooperation in the prisoner’s dilemma game in complex networks. Specifically, it proposes a simple adversarial attack method that drives players’ strategies towards a target state by adding small perturbations to social networks. The proposed method is evaluated on both model and real-world networks. Numerical simulations demonstrate that the proposed method can effectively promote cooperation with significantly smaller perturbations compared to other techniques. Additionally, this study shows that adversarial attacks can also be useful in inhibiting cooperation (promoting defection). The findings reveal that adversarial attacks on social networks can be potent tools for both promoting and inhibiting cooperation, opening new possibilities for controlling cooperative behavior in social systems while also highlighting potential risks.

Suggested Citation

  • Takemoto, Kazuhiro, 2024. "Steering cooperation: Adversarial attacks on prisoner’s dilemma in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
  • Handle: RePEc:eee:phsmap:v:655:y:2024:i:c:s0378437124007234
    DOI: 10.1016/j.physa.2024.130214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124007234
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    2. Aming Li & Lei Zhou & Qi Su & Sean P. Cornelius & Yang-Yu Liu & Long Wang & Simon A. Levin, 2020. "Evolution of cooperation on temporal networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Gao, Lei & Li, Yaotang & Wang, Zhen & Wang, Rui-Wu, 2022. "Asymmetric strategy setup solve the Prisoner’s Dilemma of the evolution of mutualism," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    4. Francisco C Santos & Jorge M Pacheco & Tom Lenaerts, 2006. "Cooperation Prevails When Individuals Adjust Their Social Ties," PLOS Computational Biology, Public Library of Science, vol. 2(10), pages 1-8, October.
    5. Du, Wen-Bo & Zheng, Hao-Ran & Hu, Mao-Bin, 2008. "Evolutionary prisoner’s dilemma game on weighted scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3796-3800.
    6. Liu, Chengwei & Wang, Juan & Li, Xiaopeng & Xia, Chengyi, 2020. "The link weight adjustment considering historical strategy promotes the cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    7. Iwata, Manabu & Akiyama, Eizo, 2016. "Heterogeneity of link weight and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 224-234.
    8. Takesue, Hirofumi, 2021. "Symmetry breaking in the prisoner’s dilemma on two-layer dynamic multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    9. Fernando P. Santos & Yphtach Lelkes & Simon A. Levin, 2021. "Link recommendation algorithms and dynamics of polarization in online social networks," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(50), pages 2102141118-, December.
    10. Szolnoki, Attila & Perc, Matjaž & Danku, Zsuzsa, 2008. "Towards effective payoffs in the prisoner’s dilemma game on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2075-2082.
    11. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    12. Teruyoshi Kobayashi & Tomokatsu Onaga, 2023. "Dynamics of diffusion on monoplex and multiplex networks: a message-passing approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 251-287, July.
    13. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
    14. Meng, Xiaokun & Sun, Shiwen & Li, Xiaoxuan & Wang, Li & Xia, Chengyi & Sun, Junqing, 2016. "Interdependency enriches the spatial reciprocity in prisoner’s dilemma game on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 388-396.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Lili & Wang, Hongsi & Wang, Rugen & Xu, Ronghua & Wang, Cheng, 2024. "The adaptive adjustment of node weights based on reputation and memory promotes fairness," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Wes Maciejewski & Feng Fu & Christoph Hauert, 2014. "Evolutionary Game Dynamics in Populations with Heterogenous Structures," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
    3. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    4. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    5. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    6. Sun, Jiaqin & Fan, Ruguo & Luo, Ming & Zhang, Yingqing & Dong, Lili, 2018. "The evolution of cooperation in spatial prisoner’s dilemma game with dynamic relationship-based preferential learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 598-611.
    7. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    8. Allen, James M. & Hoyle, Rebecca B., 2017. "Asynchronous updates can promote the evolution of cooperation on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 607-619.
    9. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    10. Li, Xiaopeng & Han, Weiwei & Yang, Wenjun & Wang, Juan & Xia, Chengyi & Li, Hui-jia & Shi, Yong, 2022. "Impact of resource-based conditional interaction on cooperation in spatial social dilemmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    11. Su, Qi & Li, Aming & Wang, Long, 2017. "Spatial structure favors cooperative behavior in the snowdrift game with multiple interactive dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 299-306.
    12. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    13. Li, Xiaopeng & Wang, Zhonglin & Xu, Yan & Zhang, Hui & Yu, Guihai, 2024. "Asymmetrical interactions driven by strategic persistence effectively alleviate social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    14. Ye, Ye & Hang, Xiao Rong & Koh, Jin Ming & Miszczak, Jarosław Adam & Cheong, Kang Hao & Xie, Neng-gang, 2020. "Passive network evolution promotes group welfare in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    15. Yanlong Zhang, 2015. "Partially and Wholly Overlapping Networks: The Evolutionary Dynamics of Social Dilemmas on Social Networks," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 1-14, June.
    16. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    17. Zhang, Jing & Li, Zhao & Zhang, Jiqiang & Ma, Lin & Zheng, Guozhong & Chen, Li, 2023. "Emergence of oscillatory cooperation in a population with incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    18. Ye, Ye & Xie, Neng-gang & Wang, Lu & Cen, Yu-wan, 2013. "The multi-agent Parrondo’s model based on the network evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5414-5421.
    19. Swami Iyer & Timothy Killingback, 2020. "Evolution of Cooperation in Social Dilemmas with Assortative Interactions," Games, MDPI, vol. 11(4), pages 1-31, September.
    20. Kokubo, Satoshi & Wang, Zhen & Tanimoto, Jun, 2015. "Spatial reciprocity for discrete, continuous and mixed strategy setups," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 552-568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:655:y:2024:i:c:s0378437124007234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.