IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v412y2022ics0096300321006743.html

Asymmetric strategy setup solve the Prisoner’s Dilemma of the evolution of mutualism

Author

Listed:
  • Gao, Lei
  • Li, Yaotang
  • Wang, Zhen
  • Wang, Rui-Wu

Abstract

Explaining the evolution of cooperation represents one of the greatest challenges in both evolutionary biology and social science. However, asymmetrical interaction, as one typical characteristic of cooperative system, has not been sufficiently considered in the existing literature for the evolution of cooperation. Incorporating the asymmetry in the strategy sets, we here construct an asymmetric game model with the so-called carrot-stick strategy, which is a mixed strategy of reward and punishment. Based on mathematical analyses, it is unveiled that this asymmetric interaction can lower the dilemma of cooperation: the dominant players and recipient players might coexist through cycle frequency. Further analysis shows that the multi-equilibria are possible, which depend on the payoff parameters and the initial conditions. That is to say, by setting up different values of the cost-to-benefit, the punishment-to-benefit, and the reward-to-benefit, we can recover three basic evolutionary dynamics of systems: dominance; bistability and coexistence. These theoretical observations are consistent with existing empirical outcomes that asymmetric sanction or reward of host species might solve the conflicts between the actors in the fig-fig wasp mutualism or in the cleaner fish-client mutualism. It is thus suggested that this asymmetric strategy setup may shed new light into the solution of social dilemmas.

Suggested Citation

  • Gao, Lei & Li, Yaotang & Wang, Zhen & Wang, Rui-Wu, 2022. "Asymmetric strategy setup solve the Prisoner’s Dilemma of the evolution of mutualism," Applied Mathematics and Computation, Elsevier, vol. 412(C).
  • Handle: RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006743
    DOI: 10.1016/j.amc.2021.126590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. E. Toby Kiers & Robert A. Rousseau & Stuart A. West & R. Ford Denison, 2003. "Host sanctions and the legume–rhizobium mutualism," Nature, Nature, vol. 425(6953), pages 78-81, September.
    2. Liu, Chen & Shi, Juan & Li, Tong & Liu, Jinzhuo, 2019. "Aspiration driven coevolution resolves social dilemmas in networks," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 247-254.
    3. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    4. Martin A. Nowak & Corina E. Tarnita & Edward O. Wilson, 2010. "The evolution of eusociality," Nature, Nature, vol. 466(7310), pages 1057-1062, August.
    5. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    6. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    7. Luo-Luo Jiang & Matjaž Perc & Attila Szolnoki, 2013. "If Cooperation Is Likely Punish Mildly: Insights from Economic Experiments Based on the Snowdrift Game," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-7, May.
    8. Zhen Wang & Marko Jusup & Lei Shi & Joung-Hun Lee & Yoh Iwasa & Stefano Boccaletti, 2018. "Exploiting a cognitive bias promotes cooperation in social dilemma experiments," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    9. Tim Clutton-Brock, 2009. "Cooperation between non-kin in animal societies," Nature, Nature, vol. 462(7269), pages 51-57, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takemoto, Kazuhiro, 2024. "Steering cooperation: Adversarial attacks on prisoner’s dilemma in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
    2. Li, Dandan & Sun, Xiaoxiao & He, Youxin & Han, Dun, 2022. "On prisoner’s dilemma game with psychological bias and memory learning," Applied Mathematics and Computation, Elsevier, vol. 433(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lulu & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of donation behavior on the evolution of cooperation in social dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    3. Ge, Xin & Yang, Jian & He, Xi & Liu, Yue & Zhao, YiXiang & Li, Lili, 2025. "Effects of third-order reputation mechanism on the dynamic evolution of cooperation in mixed-games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 660(C).
    4. Li, Minlan & Liu, Yan-Ping & Han, Yanyan & Wang, Rui-Wu, 2022. "Environmental heterogeneity unifies the effect of spatial structure on the altruistic cooperation in game-theory paradigms," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    6. Li, Minlan & Wang, Chao & Han, Yanyan & Wang, Si-Yi & Wang, Ruiwu, 2025. "Environmental feedback promotes cooperation in a spatial prisoner's dilemma game with preferential selection," Applied Mathematics and Computation, Elsevier, vol. 495(C).
    7. Egas, Martijn & Riedl, Arno, 2005. "The Economics of Altruistic Punishment and the Demise of Cooperation," IZA Discussion Papers 1646, Institute of Labor Economics (IZA).
    8. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    9. Quan, Ji & Cui, Shihui & Chen, Wenman & Wang, Xianjia, 2023. "Reputation-based probabilistic punishment on the evolution of cooperation in the spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    10. Laird, Robert A. & Goyal, Dipankar & Yazdani, Soroosh, 2013. "Geometry of ‘standoffs’ in lattice models of the spatial Prisoner’s Dilemma and Snowdrift games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3622-3633.
    11. Qiang, Shiru & Zhang, Hui, 2025. "Effect of adaptive migration with interaction intensity on the evolution of cooperation," Ecological Modelling, Elsevier, vol. 508(C).
    12. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    13. José Ignacio Santos & María Pereda & Débora Zurro & Myrian Álvarez & Jorge Caro & José Manuel Galán & Ivan Briz i Godino, 2015. "Effect of Resource Spatial Correlation and Hunter-Fisher-Gatherer Mobility on Social Cooperation in Tierra del Fuego," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-29, April.
    14. Mike Farjam & Wladislaw Mill & Marian Panganiban, 2016. "Ignorance Is Bliss, But for Whom? The Persistent Effect of Good Will on Cooperation," Games, MDPI, vol. 7(4), pages 1-19, October.
    15. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    16. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2024. "The impact of reputation-based heterogeneous evaluation and learning on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    17. Yishen Jiang & Xin Wang & Longzhao Liu & Ming Wei & Jingwu Zhao & Zhiming Zheng & Shaoting Tang, 2023. "Nonlinear eco-evolutionary games with global environmental fluctuations and local environmental feedbacks," PLOS Computational Biology, Public Library of Science, vol. 19(6), pages 1-20, June.
    18. Han, Jia-Xu & Wang, Rui-Wu, 2023. "Complex interactions promote the frequency of cooperation in snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    19. Deng, Zheng-Hong & Wang, Zi-Ren & Wang, Huan-Bo & Xu, Lin, 2021. "The evolution of cooperation in multi-games with popularity-driven fitness calculation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    20. Song, Sha & Pan, Qiuhui & Zhu, Wenqiang & He, Mingfeng, 2023. "Evolution of cooperation in games with dual attribute strategy," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.