IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923007610.html
   My bibliography  Save this article

Impact of peer pressure on the evolution of cooperation in prisoner’s dilemma game

Author

Listed:
  • Gao, Liyan
  • Pan, Qiuhui
  • He, Mingfeng

Abstract

Assuming that cooperators and defectors are influenced by peer pressure with a certain probability. The influence mode is that the neighbors who adopts the opposite strategy to the central individual will reduce the fitness of the central individual. This paper explores the impact of peer pressure on the evolution of cooperation in the prisoner’s dilemma game under the condition that the pressure sensitivity of the cooperators and defectors are equal and unequal. The simulation results show that peer pressure can promote cooperation. When the pressure sensitivity of the cooperators and defectors are equal, the influence of pressure sensitivity on the system is non-trivial. According to the value of pressure intensity, evolution of the system can be roughly divided into three categories. When the pressure intensity is weak, the system is not affected by pressure sensitivity and remains in a state of full defection. When the pressure intensity is moderate, the system undergoes a continuous phase transition from full defection to coexistence and then to full cooperation with the increase of the pressure sensitivity. When the pressure intensity is high, the system undergoes a discontinuous phase transition from full defection to full cooperation and even to full defection with the increase of the pressure sensitivity. In addition, when cooperators and defectors have different pressure sensitivities, the cooperation promotion effect is better than that when cooperators and defectors have the same pressure sensitivities. Specifically, cooperation can be promoted or even dominated under lower pressure sensitivity and pressure intensity, which can explain the emergence of cooperation.

Suggested Citation

  • Gao, Liyan & Pan, Qiuhui & He, Mingfeng, 2023. "Impact of peer pressure on the evolution of cooperation in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007610
    DOI: 10.1016/j.chaos.2023.113860
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923007610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shu, Feng & Li, Min & Liu, Xingwen, 2019. "Memory mechanism with weighting promotes cooperation in the evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 17-24.
    2. Szolnoki, Attila & Chen, Xiaojie, 2022. "Tactical cooperation of defectors in a multi-stage public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    4. He, Nanrong & Chen, Xiaojie & Szolnoki, Attila, 2019. "Central governance based on monitoring and reporting solves the collective-risk social dilemma," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 334-341.
    5. Li, Xiaopeng & Han, Weiwei & Yang, Wenjun & Wang, Juan & Xia, Chengyi & Li, Hui-jia & Shi, Yong, 2022. "Impact of resource-based conditional interaction on cooperation in spatial social dilemmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    6. He, Jialu & Wang, Jianwei & Yu, Fengyuan & Chen, Wei & Xu, Wenshu, 2022. "The persistence and transition of multiple public goods games resolves the social dilemma," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    7. Alexander L. Vail & Andrea Manica & Redouan Bshary, 2013. "Referential gestures in fish collaborative hunting," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    8. You, Tao & Wang, Peng & Jia, Danyang & Yang, Fei & Cui, Xiaodong & Liu, Chen, 2020. "The effects of heterogeneity of updating rules on cooperation in spatial network," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    9. Zhang, Jun & Hu, Bin & Huang, Yi Jie & Deng, Zheng Hong & Wu, Tao, 2020. "The evolution of cooperation affected by aspiration-driven updating rule in multi-games with voluntary participation," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    11. Wang, Zhen & Du, Wen-Bo & Cao, Xian-Bin & Zhang, Lian-Zhong, 2011. "Integrating neighborhoods in the evaluation of fitness promotes cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1234-1239.
    12. Chen, Jialin & Liu, Xingwen & Wang, Huazhang & Yang, Jun, 2022. "The disconnection-reconnection-elite mechanism enhances cooperation of evolutionary game on lattice," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    13. Gokhale, Chaitanya S. & Hauert, Christoph, 2016. "Eco-evolutionary dynamics of social dilemmas," Theoretical Population Biology, Elsevier, vol. 111(C), pages 28-42.
    14. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    15. Qing Chang & Yang Zhang, 2021. "Peer pressure in extortion game can resolve social dilemma," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(5), pages 1-7, May.
    16. Shu, Feng & Liu, Yaojun & Liu, Xingwen & Zhou, Xiaobing, 2019. "Memory-based conformity enhances cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 480-490.
    17. Shi, Juan & Hu, Die & Tao, Rui & Peng, Yunchen & Li, Yong & Liu, Jinzhuo, 2021. "Interaction between populations promotes cooperation in voluntary prisoner's dilemma," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zu, Jinjing & Xu, Fanxin & Jin, Tao & Xiang, Wei, 2022. "Reward and Punishment Mechanism with weighting enhances cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Shu, Feng, 2020. "A win-switch-lose-stay strategy promotes cooperation in the evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    3. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    4. Zhu, Jiabao & Liu, Xingwen, 2021. "The number of strategy changes can be used to promote cooperation in spatial snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    5. Pi, Bin & Li, Yuhan & Feng, Minyu, 2022. "An evolutionary game with conformists and profiteers regarding the memory mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    6. Li, Dandan & Zhou, Kai & Sun, Mei & Han, Dun, 2023. "Investigating the effectiveness of individuals’ historical memory for the evolution of the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    8. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    9. Liu, Linjie & Chen, Xiaojie, 2022. "Effects of interconnections among corruption, institutional punishment, and economic factors on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    10. Zhang, Boyu & An, Xinmiao & Dong, Yali, 2021. "Conditional cooperator enhances institutional punishment in public goods game," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    11. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    12. Zha, Jiajing & Li, Cong & Fan, Suohai, 2022. "The effect of stability-based strategy updating on cooperation in evolutionary social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    13. Jin, Jiahua & Chu, Chen & Shen, Chen & Guo, Hao & Geng, Yini & Jia, Danyang & Shi, Lei, 2018. "Heterogeneous fitness promotes cooperation in the spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 141-146.
    14. Li, Kun & Xu, Haocheng & Liu, Xiao, 2022. "Analysis and visualization of accidents severity based on LightGBM-TPE," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Restoring spatial cooperation with myopic agents in a three-strategy social dilemma," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    16. Gao, Liyan & Pan, Qiuhui & He, Mingfeng, 2022. "Advanced defensive cooperators promote cooperation in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. Liu, Chengwei & Wang, Juan & Li, Xiaopeng & Xia, Chengyi, 2020. "The link weight adjustment considering historical strategy promotes the cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    18. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    20. Lu, Shounan & Zhu, Ge & Zhang, Lianzhong, 2023. "Antisocial behavior-based environmental feedback in spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.