IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923003090.html
   My bibliography  Save this article

Investigating the effectiveness of individuals’ historical memory for the evolution of the prisoner’s dilemma game

Author

Listed:
  • Li, Dandan
  • Zhou, Kai
  • Sun, Mei
  • Han, Dun

Abstract

Individual decisions are continuously influenced by a variety of factors such as past experiences, gains, and losses. In this study, we propose an evolutionary prisoner’s dilemma game model that incorporates individuals’ historical memory. We analyze how the proportion of individuals with memory, memory factor, memory length, and fitness sensitivity index impact the cooperative emergence in two types of relational networks. We identify several critical factors that can facilitate cooperation among individuals. Through numerous simulation experiments, our results show that (i) A higher proportion of individuals with memory promotes cooperative behavior in a homogeneous relational network, while the opposite occurs in a heterogeneous relational network. (ii) Individuals who base their strategies solely on recent gains or are too sensitive to fitness changes are not conducive to group cooperation, regardless of the relational network structures. (iii) Individuals who base their strategies on a longer history of gain are more likely to exhibit cooperative behavior in games. (iv) The average cooperative frequency of individuals with memory is higher than that of those without memory when the fitness sensitivity index is lower. Our study provides insights into the role of individuals’ memory and the impact of relational networks on cooperative emergence.

Suggested Citation

  • Li, Dandan & Zhou, Kai & Sun, Mei & Han, Dun, 2023. "Investigating the effectiveness of individuals’ historical memory for the evolution of the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923003090
    DOI: 10.1016/j.chaos.2023.113408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923003090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szolnoki, Attila & Chen, Xiaojie, 2022. "Tactical cooperation of defectors in a multi-stage public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Shi, Zhenyu & Wei, Wei & Perc, Matjaž & Li, Baifeng & Zheng, Zhiming, 2022. "Coupling group selection and network reciprocity in social dilemmas through multilayer networks," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    3. EL-Seidy, Essam & Elshobaky, Entisarat.M. & Soliman, Karim.M., 2016. "Two population three-player prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 44-53.
    4. Feng, Tian-Jiao & Fan, Song-Jia & Li, Cong & Tao, Yi & Zheng, Xiu-Deng, 2023. "Noise-induced sustainability of cooperation in Prisoner's Dilemma game," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    5. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    6. Li, Kun & Mao, Yizhou & Wei, Zhenlin & Cong, Rui, 2021. "Pool-rewarding in N-person snowdrift game," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Bahel, Eric & Ball, Sheryl & Sarangi, Sudipta, 2022. "Communication and cooperation in Prisoner's Dilemma games," Games and Economic Behavior, Elsevier, vol. 133(C), pages 126-137.
    8. Jeff Gore & Hyun Youk & Alexander van Oudenaarden, 2009. "Snowdrift game dynamics and facultative cheating in yeast," Nature, Nature, vol. 459(7244), pages 253-256, May.
    9. Szolnoki, Attila & Chen, Xiaojie, 2020. "Gradual learning supports cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    10. Wang, Chaoqian & Szolnoki, Attila, 2022. "Involution game with spatio-temporal heterogeneity of social resources," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    11. Wang, Shengxian & Chen, Xiaojie & Xiao, Zhilong & Szolnoki, Attila, 2022. "Decentralized incentives for general well-being in networked public goods game," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    12. Shu, Feng & Liu, Yaojun & Liu, Xingwen & Zhou, Xiaobing, 2019. "Memory-based conformity enhances cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 480-490.
    13. Shi, Juan & Hu, Die & Tao, Rui & Peng, Yunchen & Li, Yong & Liu, Jinzhuo, 2021. "Interaction between populations promotes cooperation in voluntary prisoner's dilemma," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Dun & He, Youxin, 2023. "The impact of labor subsidy, taxation and corruption on individual behavior," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    2. Lu, Shounan & Zhu, Ge & Zhang, Lianzhong, 2023. "Antisocial behavior-based environmental feedback in spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Ding, Zhen-Wei & Zheng, Guo-Zhong & Cai, Chao-Ran & Cai, Wei-Ran & Chen, Li & Zhang, Ji-Qiang & Wang, Xu-Ming, 2023. "Emergence of cooperation in two-agent repeated games with reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chaoqian & Sun, Chengbin, 2023. "Public goods game across multilayer populations with different densities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Li, Dandan & Sun, Xiaoxiao & He, Youxin & Han, Dun, 2022. "On prisoner’s dilemma game with psychological bias and memory learning," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    3. Gao, Liyan & Pan, Qiuhui & He, Mingfeng, 2023. "Impact of peer pressure on the evolution of cooperation in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Li, Kun & Xu, Haocheng & Liu, Xiao, 2022. "Analysis and visualization of accidents severity based on LightGBM-TPE," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Restoring spatial cooperation with myopic agents in a three-strategy social dilemma," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    6. Peican Zhu & Xin Hou & Yangming Guo & Jiwei Xu & Jinzhuo Liu, 2021. "Investigating the effects of updating rules on cooperation by incorporating interactive diversity," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(2), pages 1-8, February.
    7. Wang, Chaoqian & Szolnoki, Attila, 2023. "Inertia in spatial public goods games under weak selection," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    8. Zhang, Yifan & Shu, Gang & Li, Ya, 2017. "Strategy-updating depending on local environment enhances cooperation in prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 224-232.
    9. Song, Shenpeng & Feng, Yuhao & Xu, Wenzhe & Li, Hui-Jia & Wang, Zhen, 2022. "Evolutionary prisoner’s dilemma game on signed networks based on structural balance theory," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Chu, Chen & Cui, Simin & Yuan, Zheng & Yu, Chunbin, 2022. "A win-stay-lose-learn mechanism based on aspiration can promote cooperation in a multigame," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Guo, Ruqiang & Liu, Linjie & Liu, Yuyuan & Zhang, Liang, 2023. "Evolution of trust in a hierarchical population with different investors based on investment behavioral theory," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    12. Wang, Chaoqian & Szolnoki, Attila, 2022. "Involution game with spatio-temporal heterogeneity of social resources," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    13. Xiaoyu Li & Le Cheng & Xiaotong Niu & Siying Li & Chen Liu & Peican Zhu, 2021. "Highly cooperative individuals’ clustering property in myopic strategy groups," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(6), pages 1-7, June.
    14. Song, Sha & Pan, Qiuhui & Zhu, Wenqiang & He, Mingfeng, 2023. "Evolution of cooperation in games with dual attribute strategy," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    15. Xie, Kai & Liu, Xingwen & Chen, Hao & Yang, Jun, 2022. "Preferential selection and expected payoff drive cooperation in spatial voluntary public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    16. Xu, Yan & Feng, Meiling & Zhu, Yuying & Xia, Chengyi, 2022. "Multi-player snowdrift game on scale-free simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    17. Quan, Ji & Dong, Xu & Wang, Xianjia, 2022. "Rational conformity behavior in social learning promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    18. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    19. He, Jialu & Wang, Jianwei & Yu, Fengyuan & Chen, Wei & Li, Bofan, 2022. "The slow but persistent self-improvement boosts group cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    20. Zhang, Wei & Brandes, Ulrik, 2023. "Is cooperation sustained under increased mixing in evolutionary public goods games on networks?," Applied Mathematics and Computation, Elsevier, vol. 438(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923003090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.