IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v425y2022ics0096300322001813.html
   My bibliography  Save this article

Rational conformity behavior in social learning promotes cooperation in spatial public goods game

Author

Listed:
  • Quan, Ji
  • Dong, Xu
  • Wang, Xianjia

Abstract

Conformity behavior is crucial in human social learning and we consider this effect on spatial public goods game (SPGG). Two types of agents and two corresponding social learning rules are introduced in SPGG. One is link-type agents based on the rational conformity learning rule, whose strategies are independent in different groups. The other is node-type agents based on the Fermi learning rule, whose strategies are the same in different groups. Rational conformity behavior signifies that conformity only occurs when individuals are unsatisfied with their payoffs. Through simulation experiments, we find that cooperation can be induced constantly with a large proportion of link-type agents, in which situation rational conformity behavior in social learning is conducive to the emergence of cooperation. We further find that the independent strategies of link-type agents favor reciprocity to be enhanced among cooperative groups and the extended imitation range is beneficial to distinguish cooperative groups which also improves cooperation. Moreover, an appropriate payoff threshold is favorable to induce a positive correlation between payoffs and contributions, and thus a more reasonable distribution of payoffs and strategies. Meanwhile, the payoff threshold in the rational conformity learning rule is also contributed to diminishing the spread of defective behavior for those defectors with outstandingly high payoffs. These results expand our comprehension of individuals’ conformity behavior in social learning and its effect on cooperation in social dilemmas.

Suggested Citation

  • Quan, Ji & Dong, Xu & Wang, Xianjia, 2022. "Rational conformity behavior in social learning promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 425(C).
  • Handle: RePEc:eee:apmaco:v:425:y:2022:i:c:s0096300322001813
    DOI: 10.1016/j.amc.2022.127097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322001813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Szolnoki & M. Perc & G. Szabó, 2008. "Diversity of reproduction rate supports cooperation in the prisoner's dilemma game on complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 505-509, February.
    2. Niu, Zhenxi & Xu, Jiwei & Dai, Dameng & Liang, Tairan & Mao, Deming & Zhao, Dawei, 2018. "Rational conformity behavior can promote cooperation in the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 92-96.
    3. Hu, Kaipeng & Guo, Hao & Geng, Yini & Shi, Lei, 2019. "The effect of conformity on the evolution of cooperation in multigame," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 267-272.
    4. Quan, Ji & Pu, Zhenjuan & Wang, Xianjia, 2021. "Comparison of social exclusion and punishment in promoting cooperation: Who should play the leading role?," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Yang, Kai & Huang, Changwei & Dai, Qionglin & Yang, Junzhong, 2018. "The effects of attribute persistence on cooperation in evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 23-28.
    6. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    7. Sasaki, Shusaku, 2019. "Majority size and conformity behavior in charitable giving: Field evidence from a donation-based crowdfunding platform in Japan," Journal of Economic Psychology, Elsevier, vol. 70(C), pages 36-51.
    8. Kang, Zengxin & Zhang, Lei & Li, Kun, 2019. "An improved social force model for pedestrian dynamics in shipwrecks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 355-362.
    9. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    10. Wit, Jorgen, 1999. "Social Learning in a Common Interest Voting Game," Games and Economic Behavior, Elsevier, vol. 26(1), pages 131-156, January.
    11. Xiaojie Chen & Yongkui Liu & Yonghui Zhou & Long Wang & Matjaž Perc, 2012. "Adaptive and Bounded Investment Returns Promote Cooperation in Spatial Public Goods Games," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-8, May.
    12. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    13. Chen, Liang & Sun, Jingjie & Li, Kun & Li, Qiaoru, 2022. "Research on the effectiveness of monitoring mechanism for “yield to pedestrian” based on system dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    14. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Information fusion based on reputation and payoff promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    15. Dominic D. P. Johnson & Pavel Stopka & Stephen Knights, 2003. "The puzzle of human cooperation," Nature, Nature, vol. 421(6926), pages 911-912, February.
    16. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Evidential reasoning based on imitation and aspiration information in strategy learning promotes cooperation in optional spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Liu, Run-Ran & Jia, Chun-Xiao & Rong, Zhihai, 2020. "Effects of strategy-updating cost on evolutionary spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    18. Qiang Wang & Linjie Liu & Xiaojie Chen, 2020. "Evolutionary Dynamics of Cooperation in the Public Goods Game with Individual Disguise and Peer Punishment," Dynamic Games and Applications, Springer, vol. 10(3), pages 764-782, September.
    19. Chris Birchenhall & Nikos Kastrinos & Stan Metcalfe, 1997. "Genetic algorithms in evolutionary modelling," Journal of Evolutionary Economics, Springer, vol. 7(4), pages 375-393.
    20. Szolnoki, Attila & Chen, Xiaojie, 2020. "Gradual learning supports cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    21. Quan, Ji & Yang, Xiukang & Wang, Xianjia, 2018. "Spatial public goods game with continuous contributions based on Particle Swarm Optimization learning and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 973-983.
    22. Li, Kun & Mao, Yizhou & Wei, Zhenlin & Cong, Rui, 2021. "Pool-rewarding in N-person snowdrift game," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    23. Cheng, Fei & Chen, Tong & Chen, Qiao, 2020. "Rewards based on public loyalty program promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    24. Riechmann, Thomas, 2001. "Genetic algorithm learning and evolutionary games," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 1019-1037, June.
    25. Quan, Ji & Yang, Wenjun & Li, Xia & Wang, Xianjia & Yang, Jian-Bo, 2020. "Social exclusion with dynamic cost on the evolution of cooperation in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    26. Szolnoki, Attila & Chen, Xiaojie, 2020. "Strategy dependent learning activity in cyclic dominant systems," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    27. Yang, Han-Xin & Rong, Zhihai & Lu, Pei-Min & Zeng, Yong-Zhi, 2012. "Effects of aspiration on public cooperation in structured populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4043-4049.
    28. Chen, Xiaojie & Fu, Feng & Wang, Long, 2008. "Promoting cooperation by local contribution under stochastic win-stay-lose-shift mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5609-5615.
    29. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    30. Ahsan Habib, Md. & Tanaka, Masaki & Tanimoto, Jun, 2020. "How does conformity promote the enhancement of cooperation in the network reciprocity in spatial prisoner's dilemma games?," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    31. Zhang, Liming & Huang, Changwei & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2021. "Cooperation guided by imitation, aspiration and conformity-driven dynamics in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    32. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2021. "Effect of reputation-based heterogeneous investment on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    33. Cui, Peng-Bi & Wu, Zhi-Xi, 2013. "Impact of conformity on the evolution of cooperation in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1500-1509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyi Chen & Kaiyan Dai & Xing Jin & Liqin Hu & Yongheng Wang, 2023. "Aspiration-Based Learning in k -Hop Best-Shot Binary Networked Public Goods Games," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    2. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Yu, Fengyuan & Wang, Jianwei & Chen, Wei & He, Jialu, 2023. "Increased cooperation potential and risk under suppressed strategy differentiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    4. Qiu, Can & Long, Baoxin & Yu, Dengxiu & Cheong, Kang Hao, 2023. "Evolving the classroom: A mathematical and didactic exploration of teacher-guided peer learning," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    2. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Evidential reasoning based on imitation and aspiration information in strategy learning promotes cooperation in optional spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Information fusion based on reputation and payoff promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    4. Szolnoki, Attila & Chen, Xiaojie, 2022. "Tactical cooperation of defectors in a multi-stage public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "The impact of current and historical reputation with non-uniform change on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Wang, Chaoqian & Szolnoki, Attila, 2022. "Involution game with spatio-temporal heterogeneity of social resources," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    7. Lin, Jingyan & Huang, Changwei & Dai, Qionglin & Yang, Junzhong, 2020. "Evolutionary game dynamics of combining the payoff-driven and conformity-driven update rules," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Group-size dependent synergy in heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2021. "Effect of reputation-based heterogeneous investment on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    11. Pan, Jianchen & Zhang, Lan & Han, Wenchen & Huang, Changwei, 2023. "Heterogeneous investment promotes cooperation in spatial public goods game on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    12. Quan, Ji & Yang, Xiukang & Wang, Xianjia, 2018. "Spatial public goods game with continuous contributions based on Particle Swarm Optimization learning and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 973-983.
    13. Fan, Ruguo & Zhang, Yingqing & Luo, Ming & Zhang, Hongjuan, 2017. "Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 454-463.
    14. Wang, Hanchen & Sun, Yichun & Zheng, Lei & Du, Wenbo & Li, Yumeng, 2018. "The public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 396-404.
    15. Wang, Xu-Wen & Nie, Sen & Jiang, Luo-Luo & Wang, Bing-Hong & Chen, Shi-Ming, 2017. "Role of delay-based reward in the spatial cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 153-158.
    16. Wang, Chaoqian & Huang, Chaochao, 2022. "Between local and global strategy updating in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    17. Wang, Chaoqian & Pan, Qiuhui & Ju, Xinxiang & He, Mingfeng, 2021. "Public goods game with the interdependence of different cooperative strategies," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Quan, Ji & Tang, Caixia & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Reputation evaluation with tolerance and reputation-dependent imitation on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    19. Quan, Ji & Shi, Yuang & Wang, Xianjia, 2023. "Effect of fairness-based sympathy and retaliation on cooperation in multi-player dilemma games," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    20. Chen, Qin & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of quasi-cooperative strategy on social dilemma evolution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:425:y:2022:i:c:s0096300322001813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.