IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v167y2023ics0960077922012346.html
   My bibliography  Save this article

Group-size dependent synergy in heterogeneous populations

Author

Listed:
  • Lee, Hsuan-Wei
  • Cleveland, Colin
  • Szolnoki, Attila

Abstract

When people collaborate, they expect more in return than a simple sum of their efforts. This observation is at the heart of the so-called public goods game, where the participants’ contributions are multiplied by an r synergy factor before they are distributed among group members. However, a larger group could be more effective, which can be described by a larger synergy factor. To elaborate on the possible consequences, in this study, we introduce a model where the population has different sizes of groups, and the applied synergy factor depends on the size of the group. We examine different options when the increment of r is linear, slow, or sudden, but in all cases, the cooperation level is higher than that in a population where the homogeneous r factor is used. In the latter case, smaller groups perform better; however, this behavior is reversed when synergy increases for larger groups. Hence, the entire community benefits because larger groups are rewarded better. Notably, a similar qualitative behavior can be observed for other heterogeneous topologies, including scale-free interaction graphs.

Suggested Citation

  • Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Group-size dependent synergy in heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922012346
    DOI: 10.1016/j.chaos.2022.113055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922012346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.113055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xianjia & Ding, Rui & Zhao, Jinhua & Chen, Wenman & Gu, Cuiling, 2022. "Competition of punishment and reward among inequity-averse individuals in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Cao, Xian-Bin & Du, Wen-Bo & Rong, Zhi-Hai, 2010. "The evolutionary public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1273-1280.
    3. Li, MingYuan & Kang, HongWei & Sun, XingPing & Shen, Yong & Chen, QingYi, 2022. "Replicator dynamics of public goods game with tax-based punishment," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    5. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2016. "How the expanded crowd-funding mechanism of some southern rural areas in China affects cooperative behaviors in threshold public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 649-655.
    6. Han, Weiwei & Zhang, Zhipeng & Sun, Junqing & Xia, Chengyi, 2022. "Role of reputation constraints in the spatial public goods game with second-order reputation evaluation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. Zheng, Junjun & He, Yujie & Ren, Tianyu & Huang, Yongchao, 2022. "Evolution of cooperation in public goods games with segregated networks and periodic invasion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    8. Szolnoki, Attila & Chen, Xiaojie, 2020. "Blocking defector invasion by focusing on the most successful partner," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    9. Liu, Run-Ran & Jia, Chun-Xiao & Rong, Zhihai, 2019. "Effects of enhancement level on evolutionary public goods game with payoff aspirations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 242-248.
    10. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    11. Deng, Yunsheng & Zhang, Jihui, 2021. "The role of the preferred neighbor with the expected payoff on cooperation in spatial public goods game under optimal strategy selection mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    12. Cheng, Fei & Chen, Tong & Chen, Qiao, 2020. "Rewards based on public loyalty program promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    13. Yang, Han-Xin & Yang, Jing, 2019. "Reputation-based investment strategy promotes cooperation in public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 886-893.
    14. Yang, Luhe & Zhang, Lianzhong, 2021. "Environmental feedback in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Zhong, Xiaowen & Fan, Ying & Di, Zengru, 2021. "The evolution of cooperation in public goods games on signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    16. Jinzhuo Liu & Mao Peng & Yunchen Peng & Yong Li & Chen Chu & Xiaoyu Li & Qing Liu, 2021. "Effects of inequality on a spatial evolutionary public goods game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-7, August.
    17. Wang, Hanchen & Sun, Yichun & Zheng, Lei & Du, Wenbo & Li, Yumeng, 2018. "The public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 396-404.
    18. Szolnoki, Attila & Perc, Matjaž & Danku, Zsuzsa, 2008. "Towards effective payoffs in the prisoner’s dilemma game on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2075-2082.
    19. Shilin Xiao & Liming Zhang & Haihong Li & Qionglin Dai & Junzhong Yang, 2022. "Environment-driven migration enhances cooperation in evolutionary public goods games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-9, April.
    20. Quan, Ji & Pu, Zhenjuan & Wang, Xianjia, 2021. "Comparison of social exclusion and punishment in promoting cooperation: Who should play the leading role?," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    21. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2021. "Small fraction of selective cooperators can elevate general wellbeing significantly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    22. Du, Chunpeng & Guo, Keyu & Lu, Yikang & Jin, Haoyu & Shi, Lei, 2023. "Aspiration driven exit-option resolves social dilemmas in the network," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    23. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    24. Lv, Shaojie & Song, Feifei, 2022. "Particle swarm intelligence and the evolution of cooperation in the spatial public goods game with punishment," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    25. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    26. Zhang, Haifeng & Shi, Dongmei & Liu, Runran & Wang, Binghong, 2012. "Dynamic allocation of investments promotes cooperation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2617-2622.
    27. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    28. Wang, Shengxian & Chen, Xiaojie & Xiao, Zhilong & Szolnoki, Attila, 2022. "Decentralized incentives for general well-being in networked public goods game," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    29. Gao, Hongyu & Wang, Juan & Zhang, Fan & Li, Xiaopeng & Xia, Chengyi, 2021. "Cooperation dynamics based on reputation in the mixed population with two species of strategists," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    30. Fu, Mingjian & Guo, Wenzhong & Cheng, Linlin & Huang, Shouying & Chen, Dewang, 2019. "History loyalty-based reward promotes cooperation in the spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1323-1329.
    31. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Kai & Liu, Xingwen & Wang, Huazhang & Jiang, Yulian, 2023. "Multi-heterogeneity public goods evolutionary game on lattice," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Duan, Yuxian & Huang, Jian & Zhang, Jiarui, 2023. "Evolutionary public good games based on the long-term payoff mechanism in heterogeneous networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szolnoki, Attila & Chen, Xiaojie, 2022. "Tactical cooperation of defectors in a multi-stage public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Restoring spatial cooperation with myopic agents in a three-strategy social dilemma," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    3. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2021. "Small fraction of selective cooperators can elevate general wellbeing significantly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    4. Wang, Chaoqian & Szolnoki, Attila, 2022. "Involution game with spatio-temporal heterogeneity of social resources," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Szolnoki, Attila & Chen, Xiaojie, 2020. "Blocking defector invasion by focusing on the most successful partner," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    6. Huang, Yongchao & Wan, Siyi & Zheng, Junjun & Liu, Wenyi, 2023. "Evolution of cooperation in spatial public goods game with interactive diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    7. Xie, Kai & Liu, Xingwen & Wang, Huazhang & Jiang, Yulian, 2023. "Multi-heterogeneity public goods evolutionary game on lattice," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Zhang, Lan & Xie, Yuan & Huang, Changwei & Li, Haihong & Dai, Qionglin, 2020. "Heterogeneous investments induced by historical payoffs promote cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    9. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    10. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "The impact of current and historical reputation with non-uniform change on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Jia, Chun-Xiao & Liu, Run-Ran, 2022. "A moderate self-interest preference promotes cooperation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Pan, Jianchen & Zhang, Lan & Han, Wenchen & Huang, Changwei, 2023. "Heterogeneous investment promotes cooperation in spatial public goods game on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    13. Quan, Ji & Dong, Xu & Wang, Xianjia, 2022. "Rational conformity behavior in social learning promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    14. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2022. "Mercenary punishment in structured populations," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    15. Fan, Ruguo & Zhang, Yingqing & Luo, Ming & Zhang, Hongjuan, 2017. "Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 454-463.
    16. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    17. Wang, Mie & Kang, HongWei & Shen, Yong & Sun, XingPing & Chen, QingYi, 2021. "The role of alliance cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Wang, Hanchen & Sun, Yichun & Zheng, Lei & Du, Wenbo & Li, Yumeng, 2018. "The public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 396-404.
    19. Zhenghong Wu & Huan Huang & Qinghu Liao, 2021. "The study on the role of dedicators on promoting cooperation in public goods game," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    20. Wang, Chaoqian & Sun, Chengbin, 2023. "Public goods game across multilayer populations with different densities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922012346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.