IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v10y2020i3d10.1007_s13235-019-00339-7.html
   My bibliography  Save this article

Evolutionary Dynamics of Cooperation in the Public Goods Game with Individual Disguise and Peer Punishment

Author

Listed:
  • Qiang Wang

    (University of Electronic Science and Technology of China)

  • Linjie Liu

    (University of Electronic Science and Technology of China)

  • Xiaojie Chen

    (University of Electronic Science and Technology of China)

Abstract

The phenomenon of individual disguise is ubiquitous in the real world. Recent evidences show that peer punishment is successful to stabilize cooperation among selfish individuals. However, it is unclear whether peer punishment is still able to stabilize cooperation when individual disguise for escaping being punished is considered. In this paper, we thus introduce individual disguise of defectors into the public goods game with peer punishment and aim to explore how peer punishment influences the evolutionary dynamics of cooperation, defection, and punishment in this scenario. We consider both cases of infinite and finite populations. In infinite populations, by using replicator equations, we find that although low disguise cost can hinder public cooperation, peer punishment still plays a positive role in promoting the evolution of cooperation, no matter whether second-order punishment is considered or not. We further demonstrate that the larger fine on defectors or the smaller the cost of punishment, the easier to establish a state of full punishment. In addition, in finite populations we reveal that the population spends most of the time in the region of defection for low disguise cost, and the population spends most of the time in the region of cooperation for high disguise. When second-order punishment is not considered, the punishment strategy does not have evolutionary advantage, whereas when second-order punishment is considered, the population can evolve toward regime of punishment and spends most of the time in the monomorphic states with widespread punishment or cooperation.

Suggested Citation

  • Qiang Wang & Linjie Liu & Xiaojie Chen, 2020. "Evolutionary Dynamics of Cooperation in the Public Goods Game with Individual Disguise and Peer Punishment," Dynamic Games and Applications, Springer, vol. 10(3), pages 764-782, September.
  • Handle: RePEc:spr:dyngam:v:10:y:2020:i:3:d:10.1007_s13235-019-00339-7
    DOI: 10.1007/s13235-019-00339-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-019-00339-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-019-00339-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ernst Fehr & Urs Fischbacher, "undated". "Third Party Punishment and Social Norms," IEW - Working Papers 106, Institute for Empirical Research in Economics - University of Zurich.
    2. Axelrod, Robert, 1986. "An Evolutionary Approach to Norms," American Political Science Review, Cambridge University Press, vol. 80(4), pages 1095-1111, December.
    3. Zhang, Yanling & Chen, Xiaojie & Liu, Aizhi & Sun, Changyin, 2018. "The effect of the stake size on the evolution of fairness," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 641-653.
    4. Zhang, Boyu, 2016. "Quantal response methods for equilibrium selection in normal form games," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 113-123.
    5. Mark Broom & Jan Rychtář, 2018. "Evolutionary Games with Sequential Decisions and Dollar Auctions," Dynamic Games and Applications, Springer, vol. 8(2), pages 211-231, June.
    6. Ikjyot Singh Kohli & Michael C. Haslam, 2017. "An Analysis of the Replicator Dynamics for an Asymmetric Hawk-Dove Game," International Journal of Differential Equations, Hindawi, vol. 2017, pages 1-7, April.
    7. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    8. Ernst Fehr & Simon Gächter, 2002. "Altruistic punishment in humans," Nature, Nature, vol. 415(6868), pages 137-140, January.
    9. Wang, Qiang & He, Nanrong & Chen, Xiaojie, 2018. "Replicator dynamics for public goods game with resource allocation in large populations," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 162-170.
    10. Vítor V. Vasconcelos & Francisco C. Santos & Jorge M. Pacheco, 2013. "A bottom-up institutional approach to cooperative governance of risky commons," Nature Climate Change, Nature, vol. 3(9), pages 797-801, September.
    11. Dirk Helbing & Attila Szolnoki & Matjaž Perc & György Szabó, 2010. "Evolutionary Establishment of Moral and Double Moral Standards through Spatial Interactions," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-9, April.
    12. Josef Hofbauer, 2018. "Minmax via Replicator Dynamics," Dynamic Games and Applications, Springer, vol. 8(3), pages 637-640, September.
    13. Zhang, Boyu & Hofbauer, Josef, 2016. "Quantal response methods for equilibrium selection in 2×2 coordination games," Games and Economic Behavior, Elsevier, vol. 97(C), pages 19-31.
    14. Fudenberg, Drew & Imhof, Lorens A., 2006. "Imitation processes with small mutations," Journal of Economic Theory, Elsevier, vol. 131(1), pages 251-262, November.
    15. Shi, Fei & Zhang, Boyu, 2019. "Cournot competition, imitation, and information networks," Economics Letters, Elsevier, vol. 176(C), pages 83-85.
    16. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    17. Boyu Zhang & Cong Li & Yi Tao, 2016. "Evolutionary Stability and the Evolution of Cooperation on Heterogeneous Graphs," Dynamic Games and Applications, Springer, vol. 6(4), pages 567-579, December.
    18. Timothy Cason & Lata Gangadharan, 2015. "Promoting cooperation in nonlinear social dilemmas through peer punishment," Experimental Economics, Springer;Economic Science Association, vol. 18(1), pages 66-88, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pi, Jinxiu & Yang, Guanghui & Tang, Wei & Yang, Hui, 2022. "Stochastically stable equilibria for evolutionary snowdrift games with time costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Pi, Jinxiu & Yang, Guanghui & Yang, Hui, 2022. "Evolutionary dynamics of cooperation in N-person snowdrift games with peer punishment and individual disguise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    3. Li, MingYuan & Kang, HongWei & Sun, XingPing & Shen, Yong & Chen, QingYi, 2022. "Replicator dynamics of public goods game with tax-based punishment," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Quan, Ji & Dong, Xu & Wang, Xianjia, 2022. "Rational conformity behavior in social learning promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    5. Dehghani, Sedigheh & Nazarimehr, Fahimeh & Jafari, Sajad, 2021. "How can cultural conditions affect society’s decisions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Nanrong & Chen, Xiaojie & Szolnoki, Attila, 2019. "Central governance based on monitoring and reporting solves the collective-risk social dilemma," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 334-341.
    2. Ding, Rui & Wang, Xianjia & Liu, Yang & Zhao, Jinhua & Gu, Cuiling, 2023. "Evolutionary games with environmental feedbacks under an external incentive mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Xiang Wei & Peng Xu & Shuiting Du & Guanghui Yan & Huayan Pei, 2021. "Reputational preference-based payoff punishment promotes cooperation in spatial social dilemmas," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-7, October.
    4. Huang, Shaoxu & Liu, Xuesong & Hu, Yuhan & Fu, Xiao, 2023. "The influence of aggressive behavior on cooperation evolution in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Yang, Kai & Huang, Changwei & Dai, Qionglin & Yang, Junzhong, 2018. "The effects of attribute persistence on cooperation in evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 23-28.
    6. Karl Sigmund & Christoph Hauert & Arne Traulsen & Hannelore Silva, 2011. "Social Control and the Social Contract: The Emergence of Sanctioning Systems for Collective Action," Dynamic Games and Applications, Springer, vol. 1(1), pages 149-171, March.
    7. Dirk Helbing & Anders Johansson, 2010. "Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-15, October.
    8. Jennifer A. Loughmiller-Cardinal & James Scott Cardinal, 2023. "The Behavior of Information: A Reconsideration of Social Norms," Societies, MDPI, vol. 13(5), pages 1-27, April.
    9. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. José M Galán & Maciej M Łatek & Seyed M Mussavi Rizi, 2011. "Axelrod's Metanorm Games on Networks," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-11, May.
    11. Guo, Tian & He, Zhixue & Shi, Lei, 2023. "Self-organization in mobile populations promotes the evolution of altruistic punishment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    12. Yamamoto, Hitoshi & Okada, Isamu, 2016. "How to keep punishment to maintain cooperation: Introducing social vaccine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 526-536.
    13. Kang, Zengxin & Zhang, Lei & Li, Kun, 2019. "An improved social force model for pedestrian dynamics in shipwrecks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 355-362.
    14. Ding, Rui & Wang, Xianjia & Zhao, Jinhua & Gu, Cuiling & Wang, Tao, 2023. "The evolution of cooperation in spatial public goods games under a risk-transfer mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    15. Todd Bodnar & Marcel Salathé, 2012. "Governing the Global Commons with Local Institutions," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    16. Hajime Shimao & Mayuko Nakamaru, 2013. "Strict or Graduated Punishment? Effect of Punishment Strictness on the Evolution of Cooperation in Continuous Public Goods Games," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    17. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2023. "Evolution of cooperation with nonlinear environment feedback in repeated public goods game," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    18. Joël Berger & Debra Hevenstone, 2016. "Norm enforcement in the city revisited: An international field experiment of altruistic punishment, norm maintenance, and broken windows," Rationality and Society, , vol. 28(3), pages 299-319, August.
    19. Ananish Chaudhuri, 2011. "Sustaining cooperation in laboratory public goods experiments: a selective survey of the literature," Experimental Economics, Springer;Economic Science Association, vol. 14(1), pages 47-83, March.
    20. Tian, Xiaoyong & Li, Kun & Kang, Zengxin & Peng, Yun & Cui, Hongjun, 2020. "Simulating the dynamical features of evacuation governed by periodic vibrations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:10:y:2020:i:3:d:10.1007_s13235-019-00339-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.