IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v64y2021ics0160791x20313257.html
   My bibliography  Save this article

A practice approach to understanding the multilevel dynamics of sanitation innovation

Author

Listed:
  • Kokko, Suvi
  • Fischer, Klara

Abstract

Although radical innovations are expected to play an increasing role in sustainable development by changing existing (unsustainable) systems, many of them do not succeed. This paper describes one such failure of innovation in the sanitation sector and offers insight into how innovators could redirect the innovation process to bring about real change. Drawing on practice theory in combination with the multilevel perspective on sustainability transitions, we identify elements of practices associated with a sanitation innovation and analyse how these interact with established practices in the sanitation sector. We establish the factors that facilitated and impeded this innovation's ability to create change. Based primarily on interviews conducted during a longitudinal case study undertaken between 2012 and 2018, our results suggest that: 1) the division of practice into elements of material, activity, competence and meaning facilitates a detailed analysis of how the innovation interacts with existing practices; 2) innovators may need to act as activists to align the meanings ascribed to the practice at hand across the regime actors, and 3) understanding the different elements of practice helps identify lock-ins that prevent niche innovations from succeeding. We conclude that it is necessary to change the practices of more resourceful actors in different parts of the regime, especially in policy, in order to move beyond experimental stages of innovation.

Suggested Citation

  • Kokko, Suvi & Fischer, Klara, 2021. "A practice approach to understanding the multilevel dynamics of sanitation innovation," Technology in Society, Elsevier, vol. 64(C).
  • Handle: RePEc:eee:teinso:v:64:y:2021:i:c:s0160791x20313257
    DOI: 10.1016/j.techsoc.2020.101522
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X20313257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2020.101522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherunya, Pauline C. & Ahlborg, Helene & Truffer, Bernhard, 2020. "Anchoring innovations in oscillating domestic spaces: Why sanitation service offerings fail in informal settlements," Research Policy, Elsevier, vol. 49(1).
    2. Ramani, Shyama V. & SadreGhazi, Shuan & Duysters, Geert, 2012. "On the diffusion of toilets as bottom of the pyramid innovation: Lessons from sanitation entrepreneurs," Technological Forecasting and Social Change, Elsevier, vol. 79(4), pages 676-687.
    3. Rauschmayer, Felix & Bauler, Tom & Schäpke, Niko, 2015. "Towards a thick understanding of sustainability transitions — Linking transition management, capabilities and social practices," Ecological Economics, Elsevier, vol. 109(C), pages 211-221.
    4. Coenen, Lars & Benneworth, Paul & Truffer, Bernhard, 2012. "Toward a spatial perspective on sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 968-979.
    5. ., 1998. "Technological Change," Chapters, in: Heinz D. Kurz & Neri Salvadori (ed.), The Elgar Companion to Classical Economics, volume 0, chapter 127, Edward Elgar Publishing.
    6. Watson, Matt, 2012. "How theories of practice can inform transition to a decarbonised transport system," Journal of Transport Geography, Elsevier, vol. 24(C), pages 488-496.
    7. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    8. Mara J van Welie & Wouter P C Boon & Bernhard Truffer, 2020. "Innovation system formation in international development cooperation: The role of intermediaries in urban sanitation," Science and Public Policy, Oxford University Press, vol. 47(3), pages 333-347.
    9. Quitzau, Maj-Britt, 2007. "Water-flushing toilets: Systemic development and path-dependent characteristics and their bearing on technological alternatives," Technology in Society, Elsevier, vol. 29(3), pages 351-360.
    10. Hillman, Joanne & Axon, Stephen & Morrissey, John, 2018. "Social enterprise as a potential niche innovation breakout for low carbon transition," Energy Policy, Elsevier, vol. 117(C), pages 445-456.
    11. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    12. van Welie, Mara J. & Cherunya, Pauline C. & Truffer, Bernhard & Murphy, James T., 2018. "Analysing transition pathways in developing cities: The case of Nairobi's splintered sanitation regime," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 259-271.
    13. Seleman, Amour & Bhat, Mahadev G., 2016. "Multi-criteria assessment of sanitation technologies in rural Tanzania: Implications for program implementation, health and socio-economic improvements," Technology in Society, Elsevier, vol. 46(C), pages 70-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).
    2. Fuenfschilling, Lea & Binz, Christian, 2018. "Global socio-technical regimes," Research Policy, Elsevier, vol. 47(4), pages 735-749.
    3. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.
    4. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    6. Manning, Stephan & Reinecke, Juliane, 2016. "A modular governance architecture in-the-making: How transnational standard-setters govern sustainability transitions," Research Policy, Elsevier, vol. 45(3), pages 618-633.
    7. Ohta, Kyoko, 2019. "Sustainable transitions to localized elderly care: Policy niches and welfare regimes in Japan," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 219-228.
    8. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.
    9. Ford, Rebecca & Walton, Sara & Stephenson, Janet & Rees, David & Scott, Michelle & King, Geoff & Williams, John & Wooliscroft, Ben, 2017. "Emerging energy transitions: PV uptake beyond subsidies," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 138-150.
    10. Mura, Matteo & Longo, Mariolina & Toschi, Laura & Zanni, Sara & Visani, Franco & Bianconcini, Silvia, 2021. "The role of geographical scales in sustainability transitions: An empirical investigation of the European industrial context," Ecological Economics, Elsevier, vol. 183(C).
    11. Krigsholm, Pauliina & Riekkinen, Kirsikka & Ståhle, Pirjo, 2020. "Pathways for a future cadastral system: A socio-technical approach," Land Use Policy, Elsevier, vol. 94(C).
    12. Barbanente, Angela & Grassini, Laura, 2022. "Fostering transitions in landscape policies: A multi-level perspective," Land Use Policy, Elsevier, vol. 112(C).
    13. Brem, Alexander & Radziwon, Agnieszka, 2017. "Efficient Triple Helix collaboration fostering local niche innovation projects – A case from Denmark," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 130-141.
    14. Jain, Sanjay, 2020. "Fumbling to the future? Socio-technical regime change in the recorded music industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    15. Mock, Mirijam & Omann, Ines & Polzin, Christine & Spekkink, Wouter & Schuler, Julia & Pandur, Vlad & Brizi, Ambra & Panno, Angelo, 2019. "“Something inside me has been set in motion”: Exploring the psychological wellbeing of people engaged in sustainability initiatives," Ecological Economics, Elsevier, vol. 160(C), pages 1-11.
    16. Lee, Junmin & Kim, Keungoui & Kim, Jiyong & Hwang, Junseok, 2022. "The relationship between shared mobility and regulation in South Korea: A system dynamics approach from the socio-technical transitions perspective," Technovation, Elsevier, vol. 109(C).
    17. Geels, Frank W. & Kemp, René, 2007. "Dynamics in socio-technical systems: Typology of change processes and contrasting case studies," Technology in Society, Elsevier, vol. 29(4), pages 441-455.
    18. Cherunya, Pauline C. & Ahlborg, Helene & Truffer, Bernhard, 2020. "Anchoring innovations in oscillating domestic spaces: Why sanitation service offerings fail in informal settlements," Research Policy, Elsevier, vol. 49(1).
    19. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    20. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:64:y:2021:i:c:s0160791x20313257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.