IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v28y2006i4p445-476.html
   My bibliography  Save this article

Major system change through stepwise reconfiguration: A multi-level analysis of the transformation of American factory production (1850–1930)

Author

Listed:
  • Geels, Frank W.

Abstract

The common view is that major transitions come about through breakthroughs of technological discontinuities. This article proposes gradual and stepwise reconfiguration as an alternative transition pathway. In it, new elements are adopted in the existing socio-technical regime to help solve particular problems. But as more is learned and circumstances change, these elements may trigger further changes in technology, user practice, infrastructure, and policies, eventually altering the basic architecture of the regime. These notions are integrated in a multi-level perspective on transitions and system changes. The resulting reconfiguration perspective is illustrated with a historical case study of the transition from traditional factories to mass production in America (1850–1930). The analysis shows that mass production was the last step in a much longer reconfiguration process involving cumulative changes in machine tools, building materials, materials handling technologies, power generation, and power-distribution technologies. The reconfiguration perspective has wider relevance for other systems that function through the interplay of multiple technologies, e.g., agriculture, retailing, and hospitals.

Suggested Citation

  • Geels, Frank W., 2006. "Major system change through stepwise reconfiguration: A multi-level analysis of the transformation of American factory production (1850–1930)," Technology in Society, Elsevier, vol. 28(4), pages 445-476.
  • Handle: RePEc:eee:teinso:v:28:y:2006:i:4:p:445-476
    DOI: 10.1016/j.techsoc.2006.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X06000376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2006.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klepper, Steven, 1996. "Entry, Exit, Growth, and Innovation over the Product Life Cycle," American Economic Review, American Economic Association, vol. 86(3), pages 562-583, June.
    2. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    3. Devine, Warren D., 1983. "From Shafts to Wires: Historical Perspective on Electrification," The Journal of Economic History, Cambridge University Press, vol. 43(2), pages 347-372, June.
    4. Fernando F. Suárez & James M. Utterback, 1995. "Dominant designs and the survival of firms," Strategic Management Journal, Wiley Blackwell, vol. 16(6), pages 415-430.
    5. Freeman, Chris & Louca, Francisco, 2002. "As Time Goes By: From the Industrial Revolutions to the Information Revolution," OUP Catalogue, Oxford University Press, number 9780199251056, Decembrie.
    6. ., 1998. "Technological Change," Chapters, in: Heinz D. Kurz & Neri Salvadori (ed.), The Elgar Companion to Classical Economics, volume 0, chapter 127, Edward Elgar Publishing.
    7. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    8. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    9. Cooper, Arnold C. & Schendel, Dan, 1976. "Strategic responses to technological threats," Business Horizons, Elsevier, vol. 19(1), pages 61-69, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanger, Laur & Bone, Frédérique & Rotolo, Daniele & Steinmueller, W. Edward & Schot, Johan, 2022. "Deep transitions: A mixed methods study of the historical evolution of mass production," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    2. Kanger, Laur & Sillak, Silver, 2020. "Emergence, consolidation and dominance of meta-regimes: Exploring the historical evolution of mass production (1765–1972) from the Deep Transitions perspective," Technology in Society, Elsevier, vol. 63(C).
    3. Raven, R.P.J.M. & Verbong, G.P.J., 2009. "Boundary crossing innovations: Case studies from the energy domain," Technology in Society, Elsevier, vol. 31(1), pages 85-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbanente, Angela & Grassini, Laura, 2022. "Fostering transitions in landscape policies: A multi-level perspective," Land Use Policy, Elsevier, vol. 112(C).
    2. Funk, Jeffery, 2009. "Components, systems and discontinuities: The case of magnetic recording and playback equipment," Research Policy, Elsevier, vol. 38(7), pages 1192-1202, September.
    3. Brem, Alexander & Radziwon, Agnieszka, 2017. "Efficient Triple Helix collaboration fostering local niche innovation projects – A case from Denmark," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 130-141.
    4. Jain, Sanjay, 2020. "Fumbling to the future? Socio-technical regime change in the recorded music industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    5. Lee, Junmin & Kim, Keungoui & Kim, Jiyong & Hwang, Junseok, 2022. "The relationship between shared mobility and regulation in South Korea: A system dynamics approach from the socio-technical transitions perspective," Technovation, Elsevier, vol. 109(C).
    6. Geels, Frank W. & Kemp, René, 2007. "Dynamics in socio-technical systems: Typology of change processes and contrasting case studies," Technology in Society, Elsevier, vol. 29(4), pages 441-455.
    7. Fagerberg, Jan, 2018. "Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy," Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
    8. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    9. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.
    10. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    11. Clayton M. Christensen & Fernando F. Suárez & James M. Utterback, 1998. "Strategies for Survival in Fast-Changing Industries," Management Science, INFORMS, vol. 44(12-Part-2), pages 207-220, December.
    12. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    13. Fotios Katimertzopoulos & Charis Vlados, 2019. "Towards a New Approach of Innovation in Less Developed Regional Business Ecosystems," International Journal of Business and Economic Sciences Applied Research (IJBESAR), International Hellenic University (IHU), Kavala Campus, Greece (formerly Eastern Macedonia and Thrace Institute of Technology - EMaTTech), vol. 12(2), pages 33-41, December.
    14. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    15. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    16. Falcone, Pasquale Marcello & Tani, Almona & Tartiu, Valentina Elena & Imbriani, Cesare, 2020. "Towards a sustainable forest-based bioeconomy in Italy: Findings from a SWOT analysis," Forest Policy and Economics, Elsevier, vol. 110(C).
    17. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2015. "Towards a regime-based typology of market evolution," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 276-289.
    18. Galvin, Ray, 2018. "‘Them and us’: Regional-national power-plays in the German energy transformation: A case study in Lower Franconia," Energy Policy, Elsevier, vol. 113(C), pages 269-277.
    19. Hagelskjær Lauridsen, Erik & Stissing Jensen, Jens, 2013. "The strictest energy requirements in the world: An analysis of the path dependencies of a self-proclaimed success," Energy Policy, Elsevier, vol. 53(C), pages 97-104.
    20. Fuenfschilling, Lea & Binz, Christian, 2018. "Global socio-technical regimes," Research Policy, Elsevier, vol. 47(4), pages 735-749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:28:y:2006:i:4:p:445-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.