IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v139y2019icp200-209.html
   My bibliography  Save this article

Baltic herring for food: Shades of grey in how backcasting recommendations work across exploratory scenarios

Author

Listed:
  • Sarkki, Simo
  • Pihlajamäki, Mia

Abstract

Scenario methods can be used to cope with future uncertainties by envisioning plausible futures and identifying paths to reach desirable targets. The objective of this paper is to develop novel proposals revealing generalised dynamics on “HOW” the different normative recommendations can work under different exploratory scenarios. Previous literature has focused more on developing methods for integrating normative and exploratory scenarios than on theorising dynamics of the HOW question. We examine this theoretical question via a case study on potential futures of use and governance of Baltic herring catch. The case study: 1) develops recommendations on how the use of Baltic herring as food can be increased based on a participatory backcasting workshop with fisheries experts; 2) identifies four exploratory scenarios on the future of Baltic fisheries governance based on a literature review; 3) assesses how the recommendations work under four alternative plausible futures. We identify and discuss six generalised dynamics answering the HOW question. Together, these stress the need to analyse simultaneously multiple drivers, stakeholders, exploratory scenarios, normative recommendations, and synergies and frictions between recommendations. This work contributes to capacities to cope with future changes and proactively develop practical means to make our world more sustainable.

Suggested Citation

  • Sarkki, Simo & Pihlajamäki, Mia, 2019. "Baltic herring for food: Shades of grey in how backcasting recommendations work across exploratory scenarios," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 200-209.
  • Handle: RePEc:eee:tefoso:v:139:y:2019:i:c:p:200-209
    DOI: 10.1016/j.techfore.2018.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517318024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bourgeois, Robin & Penunia, Esther & Bisht, Sonali & Boruk, Don, 2017. "Foresight for all: Co-elaborative scenario building and empowerment," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 178-188.
    2. Saritas, Ozcan & Nugroho, Yanuar, 2012. "Mapping issues and envisaging futures: An evolutionary scenario approach," Technological Forecasting and Social Change, Elsevier, vol. 79(3), pages 509-529.
    3. Henrik Carlsen & Karl Dreborg & Per Wikman-Svahn, 2013. "Tailor-made scenario planning for local adaptation to climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(8), pages 1239-1255, December.
    4. Kishita, Yusuke & McLellan, Benjamin C. & Giurco, Damien & Aoki, Kazumasu & Yoshizawa, Go & Handoh, Itsuki C., 2017. "Designing backcasting scenarios for resilient energy futures," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 114-125.
    5. Wilkinson, Angela & Kupers, Roland & Mangalagiu, Diana, 2013. "How plausibility-based scenario practices are grappling with complexity to appreciate and address 21st century challenges," Technological Forecasting and Social Change, Elsevier, vol. 80(4), pages 699-710.
    6. Zimmermann, Martin & Darkow, Inga-Lena & von der Gracht, Heiko A., 2012. "Integrating Delphi and participatory backcasting in pursuit of trustworthiness — The case of electric mobility in Germany," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1605-1621.
    7. Cairns, George & Wright, George & Fairbrother, Peter, 2016. "Promoting articulated action from diverse stakeholders in response to public policy scenarios: A case analysis of the use of ‘scenario improvisation’ method," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 97-108.
    8. O'Brien, Frances A. & Meadows, Maureen, 2013. "Scenario orientation and use to support strategy development," Technological Forecasting and Social Change, Elsevier, vol. 80(4), pages 643-656.
    9. Jones, P.J.S. & Qiu, W. & De Santo, E.M., 2013. "Governing marine protected areas: Social–ecological resilience through institutional diversity," Marine Policy, Elsevier, vol. 41(C), pages 5-13.
    10. Mathijs Vliet & Kasper Kok, 2015. "Combining backcasting and exploratory scenarios to develop robust water strategies in face of uncertain futures," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(1), pages 43-74, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramboarison-Lalao, Lovanirina & Gannouni, Kais, 2019. "Liberated firm, a leverage of well-being and technological change? A prospective study based on the scenario method," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 129-139.
    2. Tiberius, Victor & Siglow, Caroline & Sendra-García, Javier, 2020. "Scenarios in business and management: The current stock and research opportunities," Journal of Business Research, Elsevier, vol. 121(C), pages 235-242.
    3. Wright, George & Cairns, George & O'Brien, Frances A. & Goodwin, Paul, 2019. "Scenario analysis to support decision making in addressing wicked problems: Pitfalls and potential," European Journal of Operational Research, Elsevier, vol. 278(1), pages 3-19.
    4. Metz, Ashley & Hartley, Paul, 2020. "Scenario development as valuation: Opportunities for reflexivity," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    5. Ram, Camelia, 2020. "Scenario presentation and scenario generation in multi-criteria assessments: An exploratory study," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    6. Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
    7. Kishita, Yusuke & McLellan, Benjamin C. & Giurco, Damien & Aoki, Kazumasu & Yoshizawa, Go & Handoh, Itsuki C., 2017. "Designing backcasting scenarios for resilient energy futures," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 114-125.
    8. Kishita, Yusuke & Mizuno, Yuji & Fukushige, Shinichi & Umeda, Yasushi, 2020. "Scenario structuring methodology for computer-aided scenario design: An application to envisioning sustainable futures," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    9. Heinonen, Sirkka & Minkkinen, Matti & Karjalainen, Joni & Inayatullah, Sohail, 2017. "Testing transformative energy scenarios through causal layered analysis gaming," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 101-113.
    10. Andersen, Per Dannemand & Hansen, Meiken & Selin, Cynthia, 2021. "Stakeholder inclusion in scenario planning—A review of European projects," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    11. Anne Marchais-Roubelat & Fabrice Roubelat, 2019. "History, time and futures studies. Tensions from geostrategy anticipatory practices," Post-Print hal-02557600, HAL.
    12. Crawford, Megan M. & Wright, George, 2022. "The value of mass-produced COVID-19 scenarios: A quality evaluation of development processes and scenario content," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    13. Khrisydel Rhea M. Supapo & Lorafe Lozano & Ian Dominic F. Tabañag & Edward M. Querikiol, 2022. "A Backcasting Analysis toward a 100% Renewable Energy Transition by 2040 for Off-Grid Islands," Energies, MDPI, vol. 15(13), pages 1-19, June.
    14. MacKay, R. Bradley & Stoyanova, Veselina, 2017. "Scenario planning with a sociological eye: Augmenting the intuitive logics approach to understanding the Future of Scotland and the UK," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 88-100.
    15. Minkkinen, Matti, 2019. "The anatomy of plausible futures in policy processes: Comparing the cases of data protection and comprehensive security," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 172-180.
    16. Lehoux, P. & Miller, F.A. & Williams-Jones, B., 2020. "Anticipatory governance and moral imagination: Methodological insights from a scenario-based public deliberation study," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    17. Heiskanen, Aleksi & Hurmekoski, Elias & Toppinen, Anne & Näyhä, Annukka, 2022. "Exploring the unknowns – State of the art in qualitative forest-based sector foresight research," Forest Policy and Economics, Elsevier, vol. 135(C).
    18. Gallouj, Faïz & Weber, K. Matthias & Stare, Metka & Rubalcaba, Luis, 2015. "The futures of the service economy in Europe: A foresight analysis," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 80-96.
    19. Cairns, George & Wright, George & Fairbrother, Peter & Phillips, Richard, 2017. "‘Branching scenarios’ seeking articulated action for regional regeneration – A case study of limited success," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 189-202.
    20. Trutnevyte, Evelina & McDowall, Will & Tomei, Julia & Keppo, Ilkka, 2016. "Energy scenario choices: Insights from a retrospective review of UK energy futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 326-337.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:139:y:2019:i:c:p:200-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.