IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v23y1995i2p193-201.html
   My bibliography  Save this article

The approximate distribution of nonparametric regression estimates

Author

Listed:
  • Robinson, P. M.

Abstract

An improved normal approximation is obtained for the joint distribution of kernel nonparametric regression estimates, in the presence of arbitrarily many stochastic regressors and heteroscedastic but conditionally normal errors. The approximation and its goodness are affected by kernel choice and bandwidth rate.

Suggested Citation

  • Robinson, P. M., 1995. "The approximate distribution of nonparametric regression estimates," Statistics & Probability Letters, Elsevier, vol. 23(2), pages 193-201, May.
  • Handle: RePEc:eee:stapro:v:23:y:1995:i:2:p:193-201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(94)00113-M
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Härdle, Wolfgang, 1984. "Robust regression function estimation," Journal of Multivariate Analysis, Elsevier, vol. 14(2), pages 169-180, April.
    2. Mack, Y.P. & Mu¨ller, Hans-Georg, 1987. "Adaptive nonparametric estimation of a multivariate regression function," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 169-183, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giraitis, Liudas & Robinson, Peter, 2002. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 2130, London School of Economics and Political Science, LSE Library.
    2. Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth Expansions For Spectral Density Estimates And Studentized Sample Mean," Econometric Theory, Cambridge University Press, vol. 17(03), pages 497-539, June.
    3. Peter M Robinson & Carlos Velasco, 2000. "Edgeworth Expansions for Spectral Density Estimates and Studentized Sample Mean - (Now published in Economic Theory, 17 (2001), pp.497-539," STICERD - Econometrics Paper Series 390, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:23:y:1995:i:2:p:193-201. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.