IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Gauss-Newton and M-estimation for ARMA processes with infinite variance

  • Davis, Richard A.
Registered author(s):

    We consider two estimation procedures, Gauss-Newton and M-estimation, for the parameters of an ARMA (p,q) process when the innovations belong to the domain of attraction of a nonnormal stable distribution. The Gauss-Newton or iterative least squares estimate is shown to have the same limiting distribution as the maximum likelihood and Whittle estimates. The latter was derived recently by Mikosch et al. (1995). We also establish the weak convergence for a class of M-estimates, including the case of least absolute deviation, and show that, asymptotically, the M-estimate dominates both the Gauss-Newton and Whittle estimates. A brief simulation is carried out comparing the performance of M-estimation with iterative and ordinary least squares. As suggested by the asymptotic theory, M-estimation, using least absolute deviation for the loss function, outperforms the other two procedures.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V1B-3WP2CNV-6/2/64826b36217c0a2b67da1d48d661ea8c
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 63 (1996)
    Issue (Month): 1 (October)
    Pages: 75-95

    as
    in new window

    Handle: RePEc:eee:spapps:v:63:y:1996:i:1:p:75-95
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description

    Order Information: Postal: http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/OOC/InitController?id=505572&ref=505572_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Klüppelberg, Claudia & Mikosch, Thomas, 1993. "Spectral estimates and stable processes," Stochastic Processes and their Applications, Elsevier, vol. 47(2), pages 323-344, September.
    2. Davis, Richard A. & Knight, Keith & Liu, Jian, 1992. "M-estimation for autoregressions with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 145-180, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:63:y:1996:i:1:p:75-95. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.