IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v115y2005i4p539-569.html
   My bibliography  Save this article

Representations and regularities for solutions to BSDEs with reflections

Author

Listed:
  • Ma, Jin
  • Zhang, Jianfeng

Abstract

In this paper we study a class of backward stochastic differential equations with reflections (BSDER, for short). Three types of discretization procedures are introduced in the spirit of the so-called Bermuda Options in finance, so as to first establish a Feynman-Kac type formula for the martingale integrand of the BSDER, and then to derive the continuity of the paths of the martingale integrand, as well as the C1-regularity of the solution to a corresponding obstacle problem. We also introduce a new notion of regularity for a stochastic process, which we call the "L2-modulus regularity". Such a regularity is different from the usual path regularity in the literature, and we show that such regularity of the martingale integrand produces exactly the rate of convergence of a numerical scheme for BSDERs. Both numerical scheme and its rate of convergence are novel.

Suggested Citation

  • Ma, Jin & Zhang, Jianfeng, 2005. "Representations and regularities for solutions to BSDEs with reflections," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 539-569, April.
  • Handle: RePEc:eee:spapps:v:115:y:2005:i:4:p:539-569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00003-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    2. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
    3. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    4. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    5. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    6. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouchard, Bruno & Chassagneux, Jean-François, 2008. "Discrete-time approximation for continuously and discretely reflected BSDEs," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2269-2293, December.
    2. Guangbao Guo, 2018. "Finite Difference Methods for the BSDEs in Finance," IJFS, MDPI, vol. 6(1), pages 1-15, March.
    3. Christian Bender & Nikolaus Schweizer & Jia Zhuo, 2013. "A primal-dual algorithm for BSDEs," Papers 1310.3694, arXiv.org, revised Sep 2014.
    4. Chassagneux, Jean-François & Richou, Adrien, 2019. "Rate of convergence for the discrete-time approximation of reflected BSDEs arising in switching problems," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4597-4637.
    5. Erhan Bayraktar & Qi Feng & Zhaoyu Zhang, 2022. "Deep Signature Algorithm for Multi-dimensional Path-Dependent Options," Papers 2211.11691, arXiv.org, revised Jan 2024.
    6. Fahrenwaldt, Matthias A. & Sun, Chaofan, 2020. "Expected utility approximation and portfolio optimisation," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 301-314.
    7. Erhan Bayraktar & Arash Fahim, 2011. "A Stochastic Approximation for Fully Nonlinear Free Boundary Parabolic Problems," Papers 1109.5752, arXiv.org, revised Nov 2013.
    8. Teng, Long, 2022. "Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    9. Dingqian Sun, 2020. "The convergence rate from discrete to continuous optimal investment stopping problem," Papers 2004.14627, arXiv.org.
    10. Benedetti, Giuseppe & Campi, Luciano, 2016. "Utility indifference valuation for non-smooth payoffs with an application to power derivatives," LSE Research Online Documents on Economics 63016, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    2. Bally Vlad & Caramellino Lucia & Zanette Antonino, 2005. "Pricing and hedging American options by Monte Carlo methods using a Malliavin calculus approach," Monte Carlo Methods and Applications, De Gruyter, vol. 11(2), pages 97-133, June.
    3. Moez Mrad & Nizar Touzi & Amina Zeghal, 2006. "Monte Carlo Estimation of a Joint Density Using Malliavin Calculus, and Application to American Options," Computational Economics, Springer;Society for Computational Economics, vol. 27(4), pages 497-531, June.
    4. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    5. Tebaldi, Claudio, 2005. "Hedging using simulation: a least squares approach," Journal of Economic Dynamics and Control, Elsevier, vol. 29(8), pages 1287-1312, August.
    6. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    7. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    8. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    9. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    10. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    11. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Discussion Paper 2002-99, Tilburg University, Center for Economic Research.
    12. Bradley Sturt, 2021. "A nonparametric algorithm for optimal stopping based on robust optimization," Papers 2103.03300, arXiv.org, revised Mar 2023.
    13. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    14. Zbigniew Palmowski & Tomasz Serafin, 2020. "A Note on Simulation Pricing of π -Options," Risks, MDPI, vol. 8(3), pages 1-19, August.
    15. Zhu, Lei & Zhang, ZhongXiang & Fan, Ying, 2015. "Overseas oil investment projects under uncertainty: How to make informed decisions?," Journal of Policy Modeling, Elsevier, vol. 37(5), pages 742-762.
    16. Eickholt, Mathias & Entrop, Oliver & Wilkens, Marco, 2014. "Individual investors and suboptimal early exercises in the fixed-income market," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe 14, University of Passau, Faculty of Business and Economics.
    17. Nan Chen & Yanchu Liu, 2014. "American Option Sensitivities Estimation via a Generalized Infinitesimal Perturbation Analysis Approach," Operations Research, INFORMS, vol. 62(3), pages 616-632, June.
    18. Zbigniew Palmowski & Tomasz Serafin, 2020. "Note on simulation pricing of $\pi$-options," Papers 2007.02076, arXiv.org, revised Aug 2020.
    19. Chen Liu & Henry Schellhorn & Qidi Peng, 2019. "American Option Pricing With Regression: Convergence Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-31, December.
    20. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:115:y:2005:i:4:p:539-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.