IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1310.3694.html
   My bibliography  Save this paper

A primal-dual algorithm for BSDEs

Author

Listed:
  • Christian Bender
  • Nikolaus Schweizer
  • Jia Zhuo

Abstract

We generalize the primal-dual methodology, which is popular in the pricing of early-exercise options, to a backward dynamic programming equation associated with time discretization schemes of (reflected) backward stochastic differential equations (BSDEs). Taking as an input some approximate solution of the backward dynamic program, which was pre-computed, e.g., by least-squares Monte Carlo, our methodology allows to construct a confidence interval for the unknown true solution of the time discretized (reflected) BSDE at time 0. We numerically demonstrate the practical applicability of our method in two five-dimensional nonlinear pricing problems where tight price bounds were previously unavailable.

Suggested Citation

  • Christian Bender & Nikolaus Schweizer & Jia Zhuo, 2013. "A primal-dual algorithm for BSDEs," Papers 1310.3694, arXiv.org, revised Sep 2014.
  • Handle: RePEc:arx:papers:1310.3694
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1310.3694
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    2. repec:dau:papers:123456789/5524 is not listed on IDEAS
    3. Andrea Pallavicini & Daniele Perini & Damiano Brigo, 2012. "Funding, Collateral and Hedging: uncovering the mechanics and the subtleties of funding valuation adjustments," Papers 1210.3811, arXiv.org, revised Dec 2012.
    4. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286.
    5. Denis Belomestny & Christian Bender & John Schoenmakers, 2009. "True Upper Bounds For Bermudan Products Via Non-Nested Monte Carlo," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 53-71.
    6. Bouchard, Bruno & Elie, Romuald, 2008. "Discrete-time approximation of decoupled Forward-Backward SDE with jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 53-75, January.
    7. Bender, Christian & Denk, Robert, 2007. "A forward scheme for backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1793-1812, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.3694. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.