IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i3p644-665.html
   My bibliography  Save this article

Optimal Sequential Exploration: Bandits, Clairvoyants, and Wildcats

Author

Listed:
  • David B. Brown

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708)

  • James E. Smith

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708)

Abstract

This paper was motivated by the problem of developing an optimal policy for exploring an oil and gas field in the North Sea. Where should we drill first? Where do we drill next? In this and many other problems, we face a trade-off between earning (e.g., drilling immediately at the sites with maximal expected values) and learning (e.g., drilling at sites that provide valuable information) that may lead to greater earnings in the future. These “sequential exploration problems” resemble a multiarmed bandit problem, but probabilistic dependence plays a key role: outcomes at drilled sites reveal information about neighboring targets. Good exploration policies will take advantage of this information as it is revealed. We develop heuristic policies for sequential exploration problems and complement these heuristics with upper bounds on the performance of an optimal policy. We begin by grouping the targets into clusters of manageable size. The heuristics are derived from a model that treats these clusters as independent. The upper bounds are given by assuming each cluster has perfect information about the results from all other clusters. The analysis relies heavily on results for bandit superprocesses, a generalization of the multiarmed bandit problem. We evaluate the heuristics and bounds using Monte Carlo simulation and, in the North Sea example, we find that the heuristic policies are nearly optimal.

Suggested Citation

  • David B. Brown & James E. Smith, 2013. "Optimal Sequential Exploration: Bandits, Clairvoyants, and Wildcats," Operations Research, INFORMS, vol. 61(3), pages 644-665, June.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:644-665
    DOI: 10.1287/opre.2013.1164
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1164
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2013.1164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    2. Bennett L. Fox & Peter W. Glynn, 1989. "Simulating Discounted Costs," Management Science, INFORMS, vol. 35(11), pages 1297-1315, November.
    3. Mary Melekopoglou & Anne Condon, 1994. "On the Complexity of the Policy Improvement Algorithm for Markov Decision Processes," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 188-192, May.
    4. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    5. Yih Ren Chen & Michael N. Katehakis, 1986. "Linear Programming for Finite State Multi-Armed Bandit Problems," Mathematics of Operations Research, INFORMS, vol. 11(1), pages 180-183, February.
    6. Yinyu Ye, 2011. "The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 593-603, November.
    7. Daniel Adelman & Adam J. Mersereau, 2008. "Relaxations of Weakly Coupled Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 56(3), pages 712-727, June.
    8. David B. Brown & James E. Smith & Peng Sun, 2010. "Information Relaxations and Duality in Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 785-801, August.
    9. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    10. Shane G. Henderson & Peter W. Glynn, 2002. "Approximating Martingales for Variance Reduction in Markov Process Simulation," Mathematics of Operations Research, INFORMS, vol. 27(2), pages 253-271, May.
    11. J. Eric Bickel & James E. Smith, 2006. "Optimal Sequential Exploration: A Binary Learning Model," Decision Analysis, INFORMS, vol. 3(1), pages 16-32, March.
    12. Paat Rusmevichientong & John N. Tsitsiklis, 2010. "Linearly Parameterized Bandits," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 395-411, May.
    13. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    14. Ilya O. Ryzhov & Warren B. Powell & Peter I. Frazier, 2012. "The Knowledge Gradient Algorithm for a General Class of Online Learning Problems," Operations Research, INFORMS, vol. 60(1), pages 180-195, February.
    15. Guoming Lai & François Margot & Nicola Secomandi, 2010. "An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation," Operations Research, INFORMS, vol. 58(3), pages 564-582, June.
    16. Vivek F. Farias & Ritesh Madan, 2011. "The Irrevocable Multiarmed Bandit Problem," Operations Research, INFORMS, vol. 59(2), pages 383-399, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    2. Bell, Peter N, 2015. "Mineral exploration as a game of chance," MPRA Paper 62159, University Library of Munich, Germany.
    3. José Niño-Mora, 2023. "Markovian Restless Bandits and Index Policies: A Review," Mathematics, MDPI, vol. 11(7), pages 1-27, March.
    4. Ilya O. Ryzhov & Martijn R. K. Mes & Warren B. Powell & Gerald van den Berg, 2019. "Bayesian Exploration for Approximate Dynamic Programming," Operations Research, INFORMS, vol. 67(1), pages 198-214, January.
    5. Keskin, Burcu B. & Griffin, Emily C. & Prell, Jonathan O. & Dilkina, Bistra & Ferber, Aaron & MacDonald, John & Hilend, Rowan & Griffis, Stanley & Gore, Meredith L., 2023. "Quantitative Investigation of Wildlife Trafficking Supply Chains: A Review," Omega, Elsevier, vol. 115(C).
    6. Alberto Vera & Siddhartha Banerjee, 2021. "The Bayesian Prophet: A Low-Regret Framework for Online Decision Making," Management Science, INFORMS, vol. 67(3), pages 1368-1391, March.
    7. Gregg S. Gonsalves & Forrest W. Crawford & Paul D. Cleary & Edward H. Kaplan & A. David Paltiel, 2018. "An Adaptive Approach to Locating Mobile HIV Testing Services," Medical Decision Making, , vol. 38(2), pages 262-272, February.
    8. Michael Jong Kim & Andrew E.B. Lim, 2016. "Robust Multiarmed Bandit Problems," Management Science, INFORMS, vol. 62(1), pages 264-285, January.
    9. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    10. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    11. Hossein Jahandideh & Kumar Rajaram & Kevin McCardle, 2020. "Production Campaign Planning Under Learning and Decay," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 615-632, May.
    12. Raluca M. Ursu & Qianyun Zhang & Elisabeth Honka, 2023. "Search Gaps and Consumer Fatigue," Marketing Science, INFORMS, vol. 42(1), pages 110-136, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David B. Brown & Martin B. Haugh, 2017. "Information Relaxation Bounds for Infinite Horizon Markov Decision Processes," Operations Research, INFORMS, vol. 65(5), pages 1355-1379, October.
    2. David B. Brown & James E. Smith, 2014. "Information Relaxations, Duality, and Convex Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 62(6), pages 1394-1415, December.
    3. Santiago R. Balseiro & David B. Brown, 2019. "Approximations to Stochastic Dynamic Programs via Information Relaxation Duality," Operations Research, INFORMS, vol. 67(2), pages 577-597, March.
    4. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
    5. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    6. Dragos Florin Ciocan & Velibor V. Mišić, 2022. "Interpretable Optimal Stopping," Management Science, INFORMS, vol. 68(3), pages 1616-1638, March.
    7. Daniel R. Jiang & Lina Al-Kanj & Warren B. Powell, 2020. "Optimistic Monte Carlo Tree Search with Sampled Information Relaxation Dual Bounds," Operations Research, INFORMS, vol. 68(6), pages 1678-1697, November.
    8. David B. Brown & James E. Smith & Peng Sun, 2010. "Information Relaxations and Duality in Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 785-801, August.
    9. Alessio Trivella & Danial Mohseni-Taheri & Selvaprabu Nadarajah, 2023. "Meeting Corporate Renewable Power Targets," Management Science, INFORMS, vol. 69(1), pages 491-512, January.
    10. Christian Bender & Christian Gärtner & Nikolaus Schweizer, 2018. "Pathwise Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 965-965, August.
    11. Helin Zhu & Fan Ye & Enlu Zhou, 2013. "Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes," Papers 1305.4321, arXiv.org.
    12. Christian Bender & Nikolaus Schweizer & Jia Zhuo, 2013. "A primal-dual algorithm for BSDEs," Papers 1310.3694, arXiv.org, revised Sep 2014.
    13. Guoming Lai & François Margot & Nicola Secomandi, 2010. "An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation," Operations Research, INFORMS, vol. 58(3), pages 564-582, June.
    14. Indrajit Mitra & Leonid Kogan, 2014. "Accuracy Verification for Numerical Solutions of Equilibrium Models," 2014 Meeting Papers 423, Society for Economic Dynamics.
    15. Helin Zhu & Fan Ye & Enlu Zhou, 2015. "Fast estimation of true bounds on Bermudan option prices under jump-diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1885-1900, November.
    16. Leonid Kogan & Indrajit Mitra, 2021. "Near-Rational Equilibria in Heterogeneous-Agent Models: A Verification Method," FRB Atlanta Working Paper 2021-16, Federal Reserve Bank of Atlanta.
    17. Christian Bender & Christian Gaertner & Nikolaus Schweizer, 2016. "Pathwise Iteration for Backward SDEs," Papers 1605.07500, arXiv.org, revised Jun 2016.
    18. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    19. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    20. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:644-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.