IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1111.6038.html
   My bibliography  Save this paper

Optimal dual martingales, their analysis and application to new algorithms for Bermudan products

Author

Listed:
  • John Schoenmakers
  • Junbo Huang
  • Jianing Zhang

Abstract

In this paper we introduce and study the concept of optimal and surely optimal dual martingales in the context of dual valuation of Bermudan options, and outline the development of new algorithms in this context. We provide a characterization theorem, a theorem which gives conditions for a martingale to be surely optimal, and a stability theorem concerning martingales which are near to be surely optimal in a sense. Guided by these results we develop a framework of backward algorithms for constructing such a martingale. In turn this martingale may then be utilized for computing an upper bound of the Bermudan product. The methodology is pure dual in the sense that it doesn't require certain input approximations to the Snell envelope. In an It\^o-L\'evy environment we outline a particular regression based backward algorithm which allows for computing dual upper bounds without nested Monte Carlo simulation. Moreover, as a by-product this algorithm also provides approximations to the continuation values of the product, which in turn determine a stopping policy. Hence, we may obtain lower bounds at the same time. In a first numerical study we demonstrate the backward dual regression algorithm in a Wiener environment at well known benchmark examples. It turns out that the method is at least comparable to the one in Belomestny et. al. (2009) regarding accuracy, but regarding computational robustness there are even several advantages.

Suggested Citation

  • John Schoenmakers & Junbo Huang & Jianing Zhang, 2011. "Optimal dual martingales, their analysis and application to new algorithms for Bermudan products," Papers 1111.6038, arXiv.org, revised Feb 2012.
  • Handle: RePEc:arx:papers:1111.6038
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1111.6038
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    2. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    3. Carriere, Jacques F., 1996. "Valuation of the early-exercise price for options using simulations and nonparametric regression," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 19-30, December.
    4. Denis Belomestny & Christian Bender & John Schoenmakers, 2009. "True Upper Bounds For Bermudan Products Via Non‐Nested Monte Carlo," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 53-71, January.
    5. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 277-283, September.
    6. Christian Bender & Anastasia Kolodko & John Schoenmakers, 2008. "Enhanced policy iteration for American options via scenario selection," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 135-146.
    7. Denis Belomestny & Anastasia Kolodko & John Schoenmakers, 2009. "Regression methods for stochastic control problems and their convergence analysis," SFB 649 Discussion Papers SFB649DP2009-026, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    8. Kolodko A. & Schoenmakers J., 2004. "Upper Bounds for Bermudan Style Derivatives," Monte Carlo Methods and Applications, De Gruyter, vol. 10(3-4), pages 331-343, December.
    9. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    10. Anastasia Kolodko & John Schoenmakers, 2006. "Iterative construction of the optimal Bermudan stopping time," Finance and Stochastics, Springer, vol. 10(1), pages 27-49, January.
    11. Nan Chen & Paul Glasserman, 2007. "Additive and multiplicative duals for American option pricing," Finance and Stochastics, Springer, vol. 11(2), pages 153-179, April.
    12. Mark Joshi & Jochen Theis, 2002. "Bounding Bermudan swaptions in a swap-rate market model," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 370-377.
    13. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    14. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Schoenmakers, 2012. "A pure martingale dual for multiple stopping," Finance and Stochastics, Springer, vol. 16(2), pages 319-334, April.
    2. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    3. Denis Belomestny & John Schoenmakers & Fabian Dickmann, 2013. "Multilevel dual approach for pricing American style derivatives," Finance and Stochastics, Springer, vol. 17(4), pages 717-742, October.
    4. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    5. Beveridge, Christopher & Joshi, Mark & Tang, Robert, 2013. "Practical policy iteration: Generic methods for obtaining rapid and tight bounds for Bermudan exotic derivatives using Monte Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1342-1361.
    6. Louis Bhim & Reiichiro Kawai, 2018. "Smooth Upper Bounds For The Price Function Of American Style Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-38, February.
    7. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Apr 2024.
    8. Mark S. Joshi, 2016. "Analysing the bias in the primal-dual upper bound method for early exercisable derivatives: bounds, estimation and removal," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 519-533, April.
    9. Denis Belomestny & Christian Bender & John Schoenmakers, 2009. "True Upper Bounds For Bermudan Products Via Non‐Nested Monte Carlo," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 53-71, January.
    10. Joshi, Mark & Tang, Robert, 2014. "Effective sub-simulation-free upper bounds for the Monte Carlo pricing of callable derivatives and various improvements to existing methodologies," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 25-45.
    11. Jin, Xing & Yang, Cheng-Yu, 2016. "Efficient estimation of lower and upper bounds for pricing higher-dimensional American arithmetic average options by approximating their payoff functions," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 65-77.
    12. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    13. Jérôme Lelong, 2018. "Dual pricing of American options by Wiener chaos expansion," Post-Print hal-01299819, HAL.
    14. Helin Zhu & Fan Ye & Enlu Zhou, 2013. "Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes," Papers 1305.4321, arXiv.org.
    15. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
    16. Jérôme Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Working Papers hal-01983115, HAL.
    17. Jérôme Lelong, 2016. "Dual pricing of American options by Wiener chaos expansion," Working Papers hal-01299819, HAL.
    18. Denis Belomestny & John Schoenmakers, 2021. "From optimal martingales to randomized dual optimal stopping," Papers 2102.01533, arXiv.org.
    19. J'er^ome Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Papers 1901.05672, arXiv.org, revised Jul 2020.
    20. Christian Bender & Christian Gaertner & Nikolaus Schweizer, 2016. "Pathwise Iteration for Backward SDEs," Papers 1605.07500, arXiv.org, revised Jun 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1111.6038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.