IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v80y2022ics0038012121001506.html
   My bibliography  Save this article

Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty

Author

Listed:
  • Vahdani, Behnam
  • Veysmoradi, D.
  • Mousavi, S.M.
  • Amiri, M.

Abstract

Prompt reactions to the vital emergency relief necessities right after sudden-onset disasters, which are included relief distribution and victim evacuation, are crucial to the mitigation of the disaster influences in the concerned regions. This paper renders a bi-objective optimization model to plan a humanitarian districted logistics network, in which a broad range of simultaneous decisions concerning emergency facility location-allocation, redistricting, service sharing, and routing of vehicles is considered. Two types of vehicle routing problems, namely closed and open, are worked out for land and air routing, respectively. Also, due to the uncertain nature of the disaster, ranging from demand and supply to varied costs, a hybrid robust optimization is proposed to overcome this challenge. Finally, the validity of the suggested model and solution approach on a real case study is investigated. The obtained results and rendered managerial insights reveal the proposed model and solution approach's applicability and effectiveness.

Suggested Citation

  • Vahdani, Behnam & Veysmoradi, D. & Mousavi, S.M. & Amiri, M., 2022. "Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:soceps:v:80:y:2022:i:c:s0038012121001506
    DOI: 10.1016/j.seps.2021.101158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012121001506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2021.101158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Doerner, Karl & Focke, Axel & Gutjahr, Walter J., 2007. "Multicriteria tour planning for mobile healthcare facilities in a developing country," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1078-1096, June.
    3. Ye, Jun, 2010. "Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 202-204, August.
    4. Vahdani, Behnam & Tavakkoli-Moghaddam, Reza & Modarres, Mohammad & Baboli, Armand, 2012. "Reliable design of a forward/reverse logistics network under uncertainty: A robust-M/M/c queuing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1152-1168.
    5. Eko Setiawan & Jiyin Liu & Alan French, 2019. "Resource location for relief distribution and victim evacuation after a sudden-onset disaster," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 830-846, August.
    6. Balcik, Burcu & Beamon, Benita M. & Krejci, Caroline C. & Muramatsu, Kyle M. & Ramirez, Magaly, 2010. "Coordination in humanitarian relief chains: Practices, challenges and opportunities," International Journal of Production Economics, Elsevier, vol. 126(1), pages 22-34, July.
    7. L N Van Wassenhove, 2006. "Humanitarian aid logistics: supply chain management in high gear," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 475-489, May.
    8. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    9. Moreno, Alfredo & Alem, Douglas & Ferreira, Deisemara & Clark, Alistair, 2018. "An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1050-1071.
    10. Xuejie Bai, 2016. "Two-Stage Multiobjective Optimization for Emergency Supplies Allocation Problem under Integrated Uncertainty," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, April.
    11. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    12. Bayram, Vedat & Tansel, Barbaros Ç. & Yaman, Hande, 2015. "Compromising system and user interests in shelter location and evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 146-163.
    13. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    14. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    15. Saedinia, R. & Vahdani, Behnam & Etebari, F. & Afshar Nadjafi, B., 2019. "Robust gasoline closed loop supply chain design with redistricting, service sharing and intra-district service transfer," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 121-141.
    16. Afshar, Abbas & Haghani, Ali, 2012. "Modeling integrated supply chain logistics in real-time large-scale disaster relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 327-338.
    17. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Dynamic formulation for humanitarian response operations incorporating multiple organisations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 83-98.
    18. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2019. "Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 105-132.
    19. de la Torre, Luis E. & Dolinskaya, Irina S. & Smilowitz, Karen R., 2012. "Disaster relief routing: Integrating research and practice," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 88-97.
    20. Jotshi, Arun & Gong, Qiang & Batta, Rajan, 2009. "Dispatching and routing of emergency vehicles in disaster mitigation using data fusion," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 1-24, March.
    21. Yanyan Wang & Baiqing Sun, 2018. "A Multiobjective Allocation Model for Emergency Resources That Balance Efficiency and Fairness," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-8, October.
    22. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    23. Mohammadi, M. & Dehbari, S. & Vahdani, Behnam, 2014. "Design of a bi-objective reliable healthcare network with finite capacity queue under service covering uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 15-41.
    24. Lin, Yen-Hung & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2011. "A logistics model for emergency supply of critical items in the aftermath of a disaster," Socio-Economic Planning Sciences, Elsevier, vol. 45(4), pages 132-145, December.
    25. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    26. Yi, Wei & Ozdamar, Linet, 2007. "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1177-1193, June.
    27. Vahdani, Behnam & Mohammadi, M., 2015. "A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 67-87.
    28. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2016. "A dynamic model for disaster response considering prioritized demand points," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 59-75.
    29. Tavana, Madjid & Abtahi, Amir-Reza & Di Caprio, Debora & Hashemi, Reza & Yousefi-Zenouz, Reza, 2018. "An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations," Socio-Economic Planning Sciences, Elsevier, vol. 64(C), pages 21-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xiaozhou & Wang, Qingyi, 2023. "A location-routing model for free-floating shared bike collection considering manual gathering and truck transportation," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    2. Xuehong Gao, 2022. "A bi-level stochastic optimization model for multi-commodity rebalancing under uncertainty in disaster response," Annals of Operations Research, Springer, vol. 319(1), pages 115-148, December.
    3. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    4. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    5. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    6. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    7. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    8. Hu, Shao-Long & Han, Chuan-Feng & Meng, Ling-Peng, 2016. "Stochastic optimization for investment in facilities in emergency prevention," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 14-31.
    9. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    10. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    11. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    12. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    13. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    14. Huang, Kai & Jiang, Yiping & Yuan, Yufei & Zhao, Lindu, 2015. "Modeling multiple humanitarian objectives in emergency response to large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 1-17.
    15. Yanbin Chang & Yongjia Song & Burak Eksioglu, 2022. "A stochastic look-ahead approach for hurricane relief logistics operations planning under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 1231-1263, December.
    16. German A. Velasquez & Maria E. Mayorga & Eduardo A. R. Cruz, 2019. "Prepositioning inventory for disasters: a robust and equitable model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 757-785, September.
    17. Khayal, Danya & Pradhananga, Rojee & Pokharel, Shaligram & Mutlu, Fatih, 2015. "A model for planning locations of temporary distribution facilities for emergency response," Socio-Economic Planning Sciences, Elsevier, vol. 52(C), pages 22-30.
    18. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    19. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    20. Balcik, Burcu & Yanıkoğlu, İhsan, 2020. "A robust optimization approach for humanitarian needs assessment planning under travel time uncertainty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 40-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:80:y:2022:i:c:s0038012121001506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.