IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2823835.html
   My bibliography  Save this article

Two-Stage Multiobjective Optimization for Emergency Supplies Allocation Problem under Integrated Uncertainty

Author

Listed:
  • Xuejie Bai

Abstract

This paper proposes a new two-stage optimization method for emergency supplies allocation problem with multisupplier, multiaffected area, multirelief, and multivehicle. The triplet of supply, demand, and the availability of path is unknown prior to the extraordinary event and is descriptive with fuzzy random variable. Considering the fairness, timeliness, and economical efficiency, a multiobjective expected value model is built for facility location, vehicle routing, and supply allocation decisions. The goals of proposed model aim to minimize the proportion of demand nonsatisfied and response time of emergency reliefs and the total cost of the whole process. When the demand and the availability of path are discrete, the expected values in the objective functions are converted into their equivalent forms. When the supply amount is continuous, the equilibrium chance in the constraint is transformed to its equivalent one. To overcome the computational difficulty caused by multiple objectives, a goal programming model is formulated to obtain a compromise solution. Finally, an example is presented to illustrate the validity of the proposed model and the effectiveness of the solution method.

Suggested Citation

  • Xuejie Bai, 2016. "Two-Stage Multiobjective Optimization for Emergency Supplies Allocation Problem under Integrated Uncertainty," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, April.
  • Handle: RePEc:hin:jnlmpe:2823835
    DOI: 10.1155/2016/2823835
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/2823835.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/2823835.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/2823835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahdani, Behnam & Veysmoradi, D. & Mousavi, S.M. & Amiri, M., 2022. "Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2823835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.