IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v49y2019icp315-321.html
   My bibliography  Save this article

Reprint of: Chaos in G7 stock markets using over one century of data: A note

Author

Listed:
  • Tiwari, Aviral Kumar
  • Gupta, Rangan

Abstract

In our study, we tested for chaos in the historical daily and monthly datasets spanning over one century of stock returns for G7 countries. Applying the 0–1 test proposed by Gottwald and Melbourne (2005) and the recent test developed by BenSaïda and Litimi (2013), which is powerful in detecting chaotic dynamics, we found that (a) it is better to denoise the data before testing for chaos and (b), in general, chaos is observed for all countries, using both tests, when we denoised the data.

Suggested Citation

  • Tiwari, Aviral Kumar & Gupta, Rangan, 2019. "Reprint of: Chaos in G7 stock markets using over one century of data: A note," Research in International Business and Finance, Elsevier, vol. 49(C), pages 315-321.
  • Handle: RePEc:eee:riibaf:v:49:y:2019:i:c:p:315-321
    DOI: 10.1016/j.ribaf.2019.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531919305203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2019.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shapour Mohammadi & Ahmad Pouyanfar, 2011. "Behaviour of stock markets' memories," Applied Financial Economics, Taylor & Francis Journals, vol. 21(3), pages 183-194.
    2. Mishra, Ritesh Kumar & Sehgal, Sanjay & Bhanumurthy, N.R., 2011. "A search for long-range dependence and chaotic structure in Indian stock market," Review of Financial Economics, Elsevier, vol. 20(2), pages 96-104, May.
    3. Urquhart, Andrew & Hudson, Robert, 2013. "Efficient or adaptive markets? Evidence from major stock markets using very long run historic data," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 130-142.
    4. BenSaïda, Ahmed & Litimi, Houda, 2013. "High level chaos in the exchange and index markets," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 90-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamdi, Besma & Aloui, Mouna & Alqahtani, Faisal & Tiwari, Aviral, 2019. "Relationship between the oil price volatility and sectoral stock markets in oil-exporting economies: Evidence from wavelet nonlinear denoised based quantile and Granger-causality analysis," Energy Economics, Elsevier, vol. 80(C), pages 536-552.
    2. Alexeeva, Tatyana A. & Barnett, William A. & Kuznetsov, Nikolay V. & Mokaev, Timur N., 2020. "Dynamics of the Shapovalov mid-size firm model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Goodness C. Aye & Rangan Gupta & Chi Keung Marco Lau & Xin Sheng, 2019. "Is there a role for uncertainty in forecasting output growth in OECD countries? Evidence from a time-varying parameter-panel vector autoregressive model," Applied Economics, Taylor & Francis Journals, vol. 51(33), pages 3624-3631, July.
    4. Giuseppe Orlando & Michele Bufalo, 2021. "Empirical Evidences on the Interconnectedness between Sampling and Asset Returns’ Distributions," Risks, MDPI, vol. 9(5), pages 1-35, May.
    5. Claudiu Tiberiu Albulescu & Aviral Kumar Tiwari & Phouphet Kyophilavong, 2021. "Nonlinearities and Chaos: A New Analysis of CEE Stock Markets," Mathematics, MDPI, vol. 9(7), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Aviral Kumar & Gupta, Rangan, 2019. "Chaos in G7 stock markets using over one century of data: A note," Research in International Business and Finance, Elsevier, vol. 47(C), pages 304-310.
    2. Claudiu Tiberiu Albulescu & Aviral Kumar Tiwari & Phouphet Kyophilavong, 2021. "Nonlinearities and Chaos: A New Analysis of CEE Stock Markets," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
    3. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Bayesian analysis of chaos: The joint return-volatility dynamical system," MPRA Paper 80632, University Library of Munich, Germany.
    4. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
    5. Vogl, Markus, 2022. "Controversy in financial chaos research and nonlinear dynamics: A short literature review," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Moeeni , Shahram & Tayebi , Komeil, 2018. "Is It Necessary to Restrict Forex Financial Trading? A Modified Model," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 13(1), pages 63-80, January.
    7. Vasilios Plakandaras & Rangan Gupta & Luis A. Gil-Alana & Mark E. Wohar, 2019. "Are BRICS exchange rates chaotic?," Applied Economics Letters, Taylor & Francis Journals, vol. 26(13), pages 1104-1110, July.
    8. Semei Coronado-Ram'irez & Pedro Celso-Arellano & Omar Rojas, 2014. "Adaptive Market Efficiency of Agricultural Commodity Futures Contracts," Papers 1412.8017, arXiv.org, revised Mar 2015.
    9. Peter A. F. Fraser‐Mackenzie & Tiejun Ma & Ming‐Chien Sung & Johnnie E. V. Johnson, 2019. "Let's Call it Quits: Break‐Even Effects in the Decision to Stop Taking Risks," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1560-1581, July.
    10. Shalini, Velappan & Prasanna, Krishna, 2016. "Impact of the financial crisis on Indian commodity markets: Structural breaks and volatility dynamics," Energy Economics, Elsevier, vol. 53(C), pages 40-57.
    11. Biswabhusan Bhuyan & Subhamitra Patra & Ranjan Kumar Bhuian, 2020. "Market Adaptability and Evolving Predictability of Stock Returns: An Evidence from India," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 605-619, December.
    12. Ayan Bhattacharya & Rudra Sensarma, 2013. "Non-linearities in Emerging Financial Markets: Evidence from India," IIM Kozhikode Society & Management Review, , vol. 2(2), pages 165-175, July.
    13. Jasman Tuyon & Zamri Ahmada, 2016. "Behavioural finance perspectives on Malaysian stock market efficiency," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(1), pages 43-61, March.
    14. Lucía Inglada-Pérez & Sandra González y Gil, 2024. "A Study on the Nature of Complexity in the Spanish Electricity Market Using a Comprehensive Methodological Framework," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    15. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    16. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    17. Godfrey, Keith R.L., 2017. "Toward a model-free measure of market efficiency," Pacific-Basin Finance Journal, Elsevier, vol. 44(C), pages 97-112.
    18. Ozkan, Oktay, 2021. "Impact of COVID-19 on stock market efficiency: Evidence from developed countries," Research in International Business and Finance, Elsevier, vol. 58(C).
    19. Hiremath, Gourishankar S & Kumari, Jyoti, 2014. "Stock returns predictability and the adaptive market hypothesis in emerging markets: evidence from India," MPRA Paper 58378, University Library of Munich, Germany.
    20. Boya, Christophe M., 2019. "From efficient markets to adaptive markets: Evidence from the French stock exchange," Research in International Business and Finance, Elsevier, vol. 49(C), pages 156-165.

    More about this item

    Keywords

    Chaos; G7 countries; Stock returns;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:49:y:2019:i:c:p:315-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.