IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Patterns of innovation and organizational demography in emerging sustainable fields: An analysis of the chemical sector

Listed author(s):
  • Epicoco, Marianna

This paper examines the patterns of environmental innovation in the chemical sector and focuses in particular on detecting whether the rise of sustainable chemistry technologies (SCT) has stimulated the emergence of new organizations. This question is important to assess the extent to which SCT are sustaining the technological advantage of industry incumbents or are creating opportunities for new firms aspiring to develop radically new environmental innovations. We found that SCT still represent a relatively low proportion of chemical technologies and that they have not stimulated, in a significant way, the emergence of new firms. However, the importance of new firms has grown in the last 20 years and their technologies seem to have a higher potential of radicalness than incumbents’ technologies. This indicates that, although incumbents’ advantage remains strong, a small group of young firms has started to weaken such advantage. Moreover, the important role played by research organizations in generating SCT may signal that technological opportunities are expanding and that some governments, in particular the US government, are committed to develop SCT. These results suggest that, if supported by effective policies, technological ferment in the field, which at the present appears still limited, has a potential of growth.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0048733315001663
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Research Policy.

Volume (Year): 45 (2016)
Issue (Month): 2 ()
Pages: 427-441

as
in new window

Handle: RePEc:eee:respol:v:45:y:2016:i:2:p:427-441
DOI: 10.1016/j.respol.2015.10.013
Contact details of provider: Web page: http://www.elsevier.com/locate/respol

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Malerba, Franco, 2002. "Sectoral systems of innovation and production," Research Policy, Elsevier, vol. 31(2), pages 247-264, February.
  2. Christensen, Clayton M. & Rosenbloom, Richard S., 1995. "Explaining the attacker's advantage: Technological paradigms, organizational dynamics, and the value network," Research Policy, Elsevier, vol. 24(2), pages 233-257, March.
  3. Nameroff, T. J. & Garant, R. J. & Albert, M. B., 2004. "Adoption of green chemistry: an analysis based on US patents," Research Policy, Elsevier, vol. 33(6-7), pages 959-974, September.
  4. Smith, Adrian & Raven, Rob, 2012. "What is protective space? Reconsidering niches in transitions to sustainability," Research Policy, Elsevier, vol. 41(6), pages 1025-1036.
  5. Berggren, Christian & Magnusson, Thomas & Sushandoyo, Dedy, 2015. "Transition pathways revisited: Established firms as multi-level actors in the heavy vehicle industry," Research Policy, Elsevier, vol. 44(5), pages 1017-1028.
  6. Georg Graevenitz & Stefan Wagner & Dietmar Harhoff, 2013. "Incidence and Growth of Patent Thickets: The Impact of Technological Opportunities and Complexity," Journal of Industrial Economics, Wiley Blackwell, vol. 61(3), pages 521-563, September.
  7. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
  8. Epicoco, Marianna, 2013. "Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory," Research Policy, Elsevier, vol. 42(1), pages 180-195.
  9. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
  10. Roberto Fontana & Alessandro Nuvolari & Hiroshi Shimizu & Andrea Vezzulli, 2012. "Schumpeterian patterns of innovation and the sources of breakthrough inventions: evidence from a data-set of R&D awards," Journal of Evolutionary Economics, Springer, vol. 22(4), pages 785-810, September.
  11. Vanessa OLTRA (GREThA-GRES) & Maïder SAINT JEAN (GREThA-GRES), 2007. "Incrementalism of environmental innovations versus paradigmatic change: A comparative study of the automotive and chemical industries," Cahiers du GRES (2002-2009) 2007-19, Groupement de Recherches Economiques et Sociales.
  12. Ansari, Shahzad (Shaz) & Krop, Pieter, 2012. "Incumbent performance in the face of a radical innovation: Towards a framework for incumbent challenger dynamics," Research Policy, Elsevier, vol. 41(8), pages 1357-1374.
  13. Sterzi, Valerio, 2013. "Patent quality and ownership: An analysis of UK faculty patenting," Research Policy, Elsevier, vol. 42(2), pages 564-576.
  14. Giovanni Dosi & Marco Grazzi, 2009. "Energy, Development and the Environment: An Appraisal Three Decades After the ‘Limits to Growth’ Debate," Chapters,in: Recent Advances in Neo-Schumpeterian Economics, chapter 2 Edward Elgar Publishing.
  15. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
  16. Breschi, Stefano & Malerba, Franco & Orsenigo, Luigi, 2000. "Technological Regimes and Schumpeterian Patterns of Innovation," Economic Journal, Royal Economic Society, vol. 110(463), pages 388-410, April.
  17. Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
  18. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
  19. Keith Smith, 2009. "Climate change and radical energy innovation: the policy issues," Working Papers on Innovation Studies 20090101, Centre for Technology, Innovation and Culture, University of Oslo.
  20. Bergek, Anna & Berggren, Christian & Magnusson, Thomas & Hobday, Michael, 2013. "Technological discontinuities and the challenge for incumbent firms: Destruction, disruption or creative accumulation?," Research Policy, Elsevier, vol. 42(6), pages 1210-1224.
  21. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
  22. Mina, A. & Ramlogan, R. & Tampubolon, G. & Metcalfe, J.S., 2007. "Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge," Research Policy, Elsevier, vol. 36(5), pages 789-806, June.
  23. Malerba, Franco & Orsenigo, Luigi, 1996. "Schumpeterian patterns of innovation are technology-specific," Research Policy, Elsevier, vol. 25(3), pages 451-478, May.
  24. Vanessa Oltra & Maïder Saint Jean, 2007. "Incrementalism of environmental innovations versus paradigmatic change: a comparative study of the automotive and chemical industries," Post-Print hal-00155039, HAL.
  25. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
  26. Marianna Epicoco & Vanessa Oltra & Maïder Saint Jean, 2014. "Knowledge dynamics and sources of eco-innovation: Mapping the Green Chemistry community," Post-Print hal-01135463, HAL.
  27. Rosenberg, Nathan, 1969. "The Direction of Technological Change: Inducement Mechanisms and Focusing Devices," Economic Development and Cultural Change, University of Chicago Press, vol. 18(1), pages 1-24, Part I Oc.
  28. Nelson, Andrew & Earle, Andrew & Howard-Grenville, Jennifer & Haack, Julie & Young, Doug, 2014. "Do innovation measures actually measure innovation? Obliteration, symbolic adoption, and other finicky challenges in tracking innovation diffusion," Research Policy, Elsevier, vol. 43(6), pages 927-940.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:45:y:2016:i:2:p:427-441. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.