IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp1269-1291.html
   My bibliography  Save this article

Benchmarking island power systems: Results, challenges, and solutions for long term sustainability

Author

Listed:
  • Cross, Sam
  • Padfield, David
  • Ant-Wuorinen, Risto
  • King, Phillip
  • Syri, Sanna

Abstract

Islanded power systems face unique challenges in the future in environmental, economic and social sustainability. Their high reliance on oil-fired generation leads to a carbon intensive power generation profile and consequently high costs to final energy consumers, hindering the economic development of islands. A detailed benchmarking exercise of islanded systems has been undertaken in collaboration with a group of islanded power systems under the auspices of EURELECTRIC, the association for European Power Companies. Results from this benchmarking survey of 28 different islands are presented, identifying the challenges of the current status quo, particularly in regard to generation profile and emissions. Four islands are taken for detailed study, in order to identify solutions to some of the energy challenges faced by island systems, with a focus on interconnection, renewables development and energy storage. The potential for implementing the latter technologies is positive and provides a partial solution to the challenges of islanded systems but the current costs of some innovative energy technologies, e.g. energy storage, still implies that it is not necessarily possible at present to invest in these technologies without non-market subsidies. However, islands are found to be excellent locations for pilot projects on new energy technologies due to their inherent advantages of small size and vertical integration of local power companies. Furthermore, strong communities imply that it is easier to engage with end consumers when promoting new concepts for electricity supply.

Suggested Citation

  • Cross, Sam & Padfield, David & Ant-Wuorinen, Risto & King, Phillip & Syri, Sanna, 2017. "Benchmarking island power systems: Results, challenges, and solutions for long term sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1269-1291.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1269-1291
    DOI: 10.1016/j.rser.2017.05.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Fengzhen & Duic, Neven & Manuel Alves, Luis & da Graça Carvalho, Maria, 2007. "Renewislands--Renewable energy solutions for islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1888-1902, October.
    2. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    3. Shirley, Rebekah & Kammen, Daniel, 2013. "Renewable energy sector development in the Caribbean: Current trends and lessons from history," Energy Policy, Elsevier, vol. 57(C), pages 244-252.
    4. Papathanassiou, Stavros A. & Boulaxis, Nikos G., 2006. "Power limitations and energy yield evaluation for wind farms operating in island systems," Renewable Energy, Elsevier, vol. 31(4), pages 457-479.
    5. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2009. "Techno-economic comparison of energy storage systems for island autonomous electrical networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 378-392, February.
    6. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    7. Georgiou, Paraskevas N. & Mavrotas, George & Diakoulaki, Danae, 2011. "The effect of islands' interconnection to the mainland system on the development of renewable energy sources in the Greek power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2607-2620, August.
    8. Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island," Energy, Elsevier, vol. 90(P2), pages 1606-1617.
    9. Xydis, George, 2013. "A techno-economic and spatial analysis for the optimal planning of wind energy in Kythira island, Greece," International Journal of Production Economics, Elsevier, vol. 146(2), pages 440-452.
    10. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    11. Kotzebue, Julia R. & Bressers, Hans Th.A. & Yousif, Charles, 2010. "Spatial misfits in a multi-level renewable energy policy implementation process on the Small Island State of Malta," Energy Policy, Elsevier, vol. 38(10), pages 5967-5976, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nuez, Ignacio & Osorio, Javier, 2019. "Calculation of tourist sector electricity consumption and its cost in subsidised insular electrical systems: The case of the Canary Islands, Spain," Energy Policy, Elsevier, vol. 132(C), pages 839-853.
    2. Cabrera, Pedro & Lund, Henrik & Carta, José A., 2018. "Smart renewable energy penetration strategies on islands: The case of Gran Canaria," Energy, Elsevier, vol. 162(C), pages 421-443.
    3. Tomi Thomasson & Kirsikka Kiviranta & Antton Tapani & Matti Tähtinen, 2021. "Flexibility from Combined Heat and Power: A Techno-Economic Study for Fully Renewable Åland Islands," Energies, MDPI, vol. 14(19), pages 1-19, October.
    4. Qiblawey, Yazan & Alassi, Abdulrahman & Zain ul Abideen, Mohammed & Bañales, Santiago, 2022. "Techno-economic assessment of increasing the renewable energy supply in the Canary Islands: The case of Tenerife and Gran Canaria," Energy Policy, Elsevier, vol. 162(C).
    5. Alves, M. & Segurado, R. & Costa, M., 2020. "On the road to 100% renewable energy systems in isolated islands," Energy, Elsevier, vol. 198(C).
    6. Loisel, Rodica & Lemiale, Lionel, 2018. "Comparative energy scenarios: Solving the capacity sizing problem on the French Atlantic Island of Yeu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 54-67.
    7. John K. Kaldellis, 2021. "Supporting the Clean Electrification for Remote Islands: The Case of the Greek Tilos Island," Energies, MDPI, vol. 14(5), pages 1-22, March.
    8. Dionysios Pramangioulis & Konstantinos Atsonios & Nikos Nikolopoulos & Dimitrios Rakopoulos & Panagiotis Grammelis & Emmanuel Kakaras, 2019. "A Methodology for Determination and Definition of Key Performance Indicators for Smart Grids Development in Island Energy Systems," Energies, MDPI, vol. 12(2), pages 1-22, January.
    9. Meschede, Henning & Esparcia, Eugene A. & Holzapfel, Peter & Bertheau, Paul & Ang, Rosario C. & Blanco, Ariel C. & Ocon, Joey D., 2019. "On the transferability of smart energy systems on off-grid islands using cluster analysis – A case study for the Philippine archipelago," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Julio Martinez-Bolaños & Vinícius Silva & Mariana Zucchi & Raphael Heideier & Stefania Relva & Marco Saidel & Eliane Fadigas, 2020. "Performance Analysis of Topologies for Autonomous Hybrid Microgrids in Remote Non-Interconnected Communities in the Amazon Region," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    11. Ackermann, Simon & Szabo, Andrei & Bamberger, Joachim & Steinke, Florian, 2022. "Design and optimization of performance guarantees for hybrid power plants," Energy, Elsevier, vol. 239(PA).
    12. Kiviranta, Kirsikka & Thomasson, Tomi & Hirvonen, Jonne & Tähtinen, Matti, 2020. "Connecting circular economy and energy industry: A techno-economic study for the Åland Islands," Applied Energy, Elsevier, vol. 279(C).
    13. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, vol. 12(6), pages 1-47, March.
    14. Hannah Mareike Marczinkowski & Luísa Barros, 2020. "Technical Approaches and Institutional Alignment to 100% Renewable Energy System Transition of Madeira Island—Electrification, Smart Energy and the Required Flexible Market Conditions," Energies, MDPI, vol. 13(17), pages 1-22, August.
    15. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    16. Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Notton, Gilles, 2015. "Importance of islands in renewable energy production and storage: The situation of the French islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 260-269.
    2. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.
    3. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    4. Surroop, Dinesh & Raghoo, Pravesh, 2018. "Renewable energy to improve energy situation in African island states," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 176-183.
    5. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    6. Caralis, George & Christakopoulos, Theofanis & Karellas, Sotirios & Gao, Zhiqiu, 2019. "Analysis of energy storage systems to exploit wind energy curtailment in Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 122-139.
    7. Maria Panagiotidou & George Xydis & Christopher Koroneos, 2016. "Environmental Siting Framework for Wind Farms: A Case Study in the Dodecanese Islands," Resources, MDPI, vol. 5(3), pages 1-25, July.
    8. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).
    9. Dimou, Andreas & Vakalis, Stergios, 2022. "Technoeconomic analysis of green energy transitions in isolated grids: The case of Ai Stratis – Green Island," Renewable Energy, Elsevier, vol. 195(C), pages 66-75.
    10. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    11. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    12. Ahmadian, Ali & Sedghi, Mahdi & Aliakbar-Golkar, Masoud & Elkamel, Ali & Fowler, Michael, 2016. "Optimal probabilistic based storage planning in tap-changer equipped distribution network including PEVs, capacitor banks and WDGs: A case study for Iran," Energy, Elsevier, vol. 112(C), pages 984-997.
    13. Praene, Jean Philippe & Fakra, Damien Ali Hamada & Benard, Fiona & Ayagapin, Leslie & Rachadi, Mohamed Nasroudine Mohamed, 2021. "Comoros’s energy review for promoting renewable energy sources," Renewable Energy, Elsevier, vol. 169(C), pages 885-893.
    14. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    15. Ranaboldo, Matteo & Lega, Bruno Domenech & Ferrenbach, David Vilar & Ferrer-Martí, Laia & Moreno, Rafael Pastor & García-Villoria, Alberto, 2014. "Renewable energy projects to electrify rural communities in Cape Verde," Applied Energy, Elsevier, vol. 118(C), pages 280-291.
    16. Mendoza-Vizcaino, Javier & Sumper, Andreas & Sudria-Andreu, Antoni & Ramirez, J.M., 2016. "Renewable technologies for generation systems in islands and their application to Cozumel Island, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 348-361.
    17. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    18. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Bundhoo, Zumar M.A., 2018. "Renewable energy exploitation in the small island developing state of Mauritius: Current practice and future potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2029-2038.
    20. Petruschke, Philipp & Gasparovic, Goran & Voll, Philip & Krajačić, Goran & Duić, Neven & Bardow, André, 2014. "A hybrid approach for the efficient synthesis of renewable energy systems," Applied Energy, Elsevier, vol. 135(C), pages 625-633.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1269-1291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.