IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v73y2017icp1031-1040.html
   My bibliography  Save this article

Current software barriers to advanced model-based control design for energy-efficient buildings

Author

Listed:
  • Atam, Ercan

Abstract

Fast and easy advanced model-based control design for energy-efficient multi-zone buildings is crucial for optimal energy savings, and this strongly depends on the availability and capability of advanced simulation and control design software and tools. In this paper, first a state-of-the-art review of the commonly used major software and tools by the community is done with respect to the barriers they present to advanced model-based control design for energy-efficient buildings. Next, the relevant novel concept of Functional Moke-up Interface is reviewed and the associated advances up to date are summarized. Finally, a set desired control-oriented features for new generation tools are given towards better solutions for energy-efficient building control designs.

Suggested Citation

  • Atam, Ercan, 2017. "Current software barriers to advanced model-based control design for energy-efficient buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1031-1040.
  • Handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:1031-1040
    DOI: 10.1016/j.rser.2017.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117302186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    2. Atam, Ercan & Helsen, Lieve, 2016. "Ground-coupled heat pumps: Part 2—Literature review and research challenges in optimal design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1668-1684.
    3. Goyal, Siddharth & Barooah, Prabir & Middelkoop, Timothy, 2015. "Experimental study of occupancy-based control of HVAC zones," Applied Energy, Elsevier, vol. 140(C), pages 75-84.
    4. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    5. Atam, Ercan & Helsen, Lieve, 2016. "Ground-coupled heat pumps: Part 1 – Literature review and research challenges in modeling and optimal control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1653-1667.
    6. Chemisana, Daniel, 2011. "Building Integrated Concentrating Photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 603-611, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    2. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    3. Nageler, P. & Schweiger, G. & Schranzhofer, H. & Mach, T. & Heimrath, R. & Hochenauer, C., 2018. "Novel method to simulate large-scale thermal city models," Energy, Elsevier, vol. 157(C), pages 633-646.
    4. García Nieto, Paulino José & García–Gonzalo, Esperanza & Paredes–Sánchez, Beatriz María & Paredes–Sánchez, José Pablo, 2023. "Modelling energy performance of residential dwellings by using the MARS technique, SVM-based approach, MLP neural network and M5 model tree," Applied Energy, Elsevier, vol. 341(C).
    5. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    6. Schweiger, Gerald & Heimrath, Richard & Falay, Basak & O'Donovan, Keith & Nageler, Peter & Pertschy, Reinhard & Engel, Georg & Streicher, Wolfgang & Leusbrock, Ingo, 2018. "District energy systems: Modelling paradigms and general-purpose tools," Energy, Elsevier, vol. 164(C), pages 1326-1340.
    7. Faustino Patiño-Cambeiro & Guillermo Bastos & Julia Armesto & Faustino Patiño-Barbeito, 2017. "Multidisciplinary Energy Assessment of Tertiary Buildings: Automated Geomatic Inspection, Building Information Modeling Reconstruction and Building Performance Simulation," Energies, MDPI, vol. 10(7), pages 1-17, July.
    8. Zhang, Sheng & Cheng, Yong & Fang, Zhaosong & Huan, Chao & Lin, Zhang, 2017. "Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving," Applied Energy, Elsevier, vol. 204(C), pages 420-431.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    2. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    3. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    4. Tang, Fujiao & Nowamooz, Hossein, 2019. "Sensitive analysis on the effective soil thermal conductivity of the Thermal Response Test considering various testing times, field conditions and U-pipe lengths," Renewable Energy, Elsevier, vol. 143(C), pages 1732-1743.
    5. Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
    6. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    7. Beaudry, Gabrielle & Pasquier, Philippe & Marcotte, Denis & Zarrella, Angelo, 2022. "Flow rate control in standing column wells: A flexible solution for reducing the energy use and peak power demand of the built environment," Applied Energy, Elsevier, vol. 313(C).
    8. Atam, Ercan & Schulte, Daniel Otto & Arteconi, Alessia & Sass, Ingo & Helsen, Lieve, 2018. "Control-oriented modeling of geothermal borefield thermal dynamics through Hammerstein-Wiener models," Renewable Energy, Elsevier, vol. 120(C), pages 468-477.
    9. Gultekin, Ahmet & Aydin, Murat & Sisman, Altug, 2019. "Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers," Applied Energy, Elsevier, vol. 237(C), pages 163-170.
    10. Noye, Sarah & Mulero Martinez, Rubén & Carnieletto, Laura & De Carli, Michele & Castelruiz Aguirre, Amaia, 2022. "A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Yu, Xiaohui & Li, Hongwei & Yao, Sheng & Nielsen, Vilhjalmur & Heller, Alfred, 2020. "Development of an efficient numerical model and analysis of heat transfer performance for borehole heat exchanger," Renewable Energy, Elsevier, vol. 152(C), pages 189-197.
    12. Salvia, Monica & Simoes, Sofia G. & Herrando, María & Čavar, Marko & Cosmi, Carmelina & Pietrapertosa, Filomena & Gouveia, João Pedro & Fueyo, Norberto & Gómez, Antonio & Papadopoulou, Kiki & Taxeri, , 2021. "Improving policy making and strategic planning competencies of public authorities in the energy management of municipal public buildings: The PrioritEE toolbox and its application in five mediterranea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Dehghan B, Babak, 2018. "Thermal conductivity determination of ground by new modified two dimensional analytical models: Study cases," Renewable Energy, Elsevier, vol. 118(C), pages 393-401.
    14. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Giovanni Barone & Annamaria Buonomano & Cesare Forzano & Adolfo Palombo, 2019. "Building Energy Performance Analysis: An Experimental Validation of an In-House Dynamic Simulation Tool through a Real Test Room," Energies, MDPI, vol. 12(21), pages 1-39, October.
    17. Tsagarakis, Konstantinos P., 2020. "Shallow geothermal energy under the microscope: Social, economic, and institutional aspects," Renewable Energy, Elsevier, vol. 147(P2), pages 2801-2808.
    18. Vinnemeier, Philipp & Wirsum, Manfred & Malpiece, Damien & Bove, Roberto, 2016. "Integration of heat pumps into thermal plants for creation of large-scale electricity storage capacities," Applied Energy, Elsevier, vol. 184(C), pages 506-522.
    19. Qiang, Guofeng & Tang, Shu & Hao, Jianli & Di Sarno, Luigi & Wu, Guangdong & Ren, Shaoxing, 2023. "Building automation systems for energy and comfort management in green buildings: A critical review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    20. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:1031-1040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.