IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v57y2016icp292-301.html
   My bibliography  Save this article

Integrating bibliometrics and roadmapping: A case of strategic promotion for the ground source heat pump in China

Author

Listed:
  • Liao, Pin-Chao
  • Zhang, Kenan
  • Wang, Tao
  • Wang, Yanqing

Abstract

The ground source heat pump (GSHP) is one of the most promising energy-efficient technologies in development. However, the degree to which the application of GSHP has been promoted in China remains unsatisfactory. Critics of GSHP development in China have asserted that a more thorough understanding of GSHP is paramount for technology road mapping. This, in turn, has affected policymakers׳ development of regulations that facilitate R&D related to GSHP. Because many researchers have proposed specific terms and categorization approaches in relation to GSHP, it is imperative to transform and analyze a substantive knowledge system derived from massive amounts of qualitative information to produce a roadmap for the development of GSHP. To this end, we employed a bibiliometrics approach to analyze patent information. First, we engaged in semantic labeling of patent files and recorded the co-occurrence of the terms associated with the GSHP׳s ontology. Second, we employed an algorithm called the Fuzzy Overlapping Cluster (FOPC) to analyze the co-occurrence information. In doing so, we sought to classify patent data and further define sub-technologies associated with GSHP. Third, we used accumulative patent numbers to develop a logistic model for observing development trends related to each GHSP sub-technology. Fourth, we leveraged social network analysis to calculate and graphically illustrate interdependence among GSHP sub-technologies. The results these analytic approaches produce allowed us to conclude that (a) GSHP should be categorized into four sub-technologies: the water source heat pump, the ground coupled heat pump, the heat pump/system operation technique, and central air-conditioning system, and (b) the government should revise building codes and standards with a consideration of GCHP, as well as the heat pump/system operation techniques.

Suggested Citation

  • Liao, Pin-Chao & Zhang, Kenan & Wang, Tao & Wang, Yanqing, 2016. "Integrating bibliometrics and roadmapping: A case of strategic promotion for the ground source heat pump in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 292-301.
  • Handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:292-301
    DOI: 10.1016/j.rser.2015.12.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211501463X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blum, Philipp & Campillo, Gisela & Münch, Wolfram & Kölbel, Thomas, 2010. "CO2 savings of ground source heat pump systems – A regional analysis," Renewable Energy, Elsevier, vol. 35(1), pages 122-127.
    2. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    3. Zhang, Kenan & Liao, Pin-Chao, 2015. "Ontology of ground source heat pump," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 51-59.
    4. Chen, Yen-Liang & Hu, Hui-Ling, 2006. "An overlapping cluster algorithm to provide non-exhaustive clustering," European Journal of Operational Research, Elsevier, vol. 173(3), pages 762-780, September.
    5. Bi, Yuehong & Wang, Xinhong & Liu, Yun & Zhang, Hua & Chen, Lingen, 2009. "Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes," Applied Energy, Elsevier, vol. 86(12), pages 2560-2565, December.
    6. Yang, Wei & Zhou, Jin & Xu, Wei & Zhang, Guoqiang, 2010. "Current status of ground-source heat pumps in China," Energy Policy, Elsevier, vol. 38(1), pages 323-332, January.
    7. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    8. Campbell, Richard S., 1983. "Patent trends as a technological forecasting tool," World Patent Information, Elsevier, vol. 5(3), pages 137-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. R. C. Assunção, Lorena & A. S. Mendes, Pietro & Matos, Stelvia & Borschiver, Suzana, 2021. "Technology roadmap of renewable natural gas: Identifying trends for research and development to improve biogas upgrading technology management," Applied Energy, Elsevier, vol. 292(C).
    3. Wenting Ma & Moon Keun Kim & Jianli Hao, 2019. "Numerical Simulation Modeling of a GSHP and WSHP System for an Office Building in the Hot Summer and Cold Winter Region of China: A Case Study in Suzhou," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    4. Seyed Mahmoud Zanjirchi & Mina Rezaeian Abrishami & Negar Jalilian, 2019. "Four decades of fuzzy sets theory in operations management: application of life-cycle, bibliometrics and content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1289-1309, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    2. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    3. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    4. Zhai, X.Q. & Qu, M. & Yu, X. & Yang, Y. & Wang, R.Z., 2011. "A review for the applications and integrated approaches of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3133-3140, August.
    5. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    6. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    7. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    8. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    9. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    10. Antonijevic, Dragi & Komatina, Mirko, 2011. "Sustainable sub-geothermal heat pump heating in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3534-3538.
    11. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    12. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    13. Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
    14. Li, HongQiang & Kang, ShuShuo & Yu, Zhun & Cai, Bo & Zhang, GuoQiang, 2014. "A feasible system integrating combined heating and power system with ground-source heat pump," Energy, Elsevier, vol. 74(C), pages 240-247.
    15. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
    16. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    17. Maestre, Ismael Rodríguez & Gallero, Francisco Javier González & Gómez, Pascual Álvarez & Pérez-Lombard, Luis, 2015. "A new RC and g-function hybrid model to simulate vertical ground heat exchangers," Renewable Energy, Elsevier, vol. 78(C), pages 631-642.
    18. Geng, Yong & Sarkis, Joseph & Wang, Xinbei & Zhao, Hongyan & Zhong, Yongguang, 2013. "Regional application of ground source heat pump in China: A case of Shenyang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 95-102.
    19. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.
    20. Lucia, Umberto & Simonetti, Marco & Chiesa, Giacomo & Grisolia, Giulia, 2017. "Ground-source pump system for heating and cooling: Review and thermodynamic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 867-874.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:292-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.