IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v56y2016icp975-987.html
   My bibliography  Save this article

Risk scorecard concept in wind energy projects: An integrated approach

Author

Listed:
  • Kucukali, Serhat

Abstract

The proposed risk assessment tool quantifies economic, environmental, political, and societal risks in wind energy projects. The risks are quantified based on the measured data and document evidence. An important component of the proposed methodology includes converting different external risks into a common scale and these scales express the level of risk factors. A survey was conducted with the experts in order to determine the relative importance of external risks. Applicability of the proposed tool is tested on real time wind power plants that are located in Izmir Province on the Aegean coast of Turkey. Change in laws and regulations, environmental issues, local community, grid connection, land use and permits, and erroneous wind resource assessment appeared to be key risk factors. The findings of case studies showed that the perception of inadequate understanding of the potential risks can lead to significant revenue loss. The proposed method estimates each risk factor level separately and then aggregates them by calculating the Project Risk Score (PRS) which is linked to the normalized revenue loss.

Suggested Citation

  • Kucukali, Serhat, 2016. "Risk scorecard concept in wind energy projects: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 975-987.
  • Handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:975-987
    DOI: 10.1016/j.rser.2015.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115014008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grassi, Stefano & Chokani, Ndaona & Abhari, Reza S., 2012. "Large scale technical and economical assessment of wind energy potential with a GIS tool: Case study Iowa," Energy Policy, Elsevier, vol. 45(C), pages 73-85.
    2. Fratzscher, Marcel & Juvenal, Luciana & Sarno, Lucio, 2010. "Asset prices, exchange rates and the current account," European Economic Review, Elsevier, vol. 54(5), pages 643-658, July.
    3. Marcel Fratzscher & Roland Straub, 2009. "Asset Prices and Current Account Fluctuations in G-7 Economies," IMF Staff Papers, Palgrave Macmillan, vol. 56(3), pages 633-654, August.
    4. Kucukali, Serhat & Dinçkal, Çiğdem, 2014. "Wind energy resource assessment of Izmit in the West Black Sea Coastal Region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 790-795.
    5. Raimo Hämäläinen & Eero Kettunen & Mika Marttunen & Harri Ehtamo, 2001. "Evaluating a Framework for Multi-Stakeholder Decision Support in Water Resources Management," Group Decision and Negotiation, Springer, vol. 10(4), pages 331-353, July.
    6. Paul R. Bergin, 2011. "Asset price booms and current account deficits," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue dec.5.
    7. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    8. Gass, Viktoria & Schmidt, Johannes & Strauss, Franziska & Schmid, Erwin, 2013. "Assessing the economic wind power potential in Austria," Energy Policy, Elsevier, vol. 53(C), pages 323-330.
    9. Baris, Kemal & Kucukali, Serhat, 2012. "Availibility of renewable energy sources in Turkey: Current situation, potential, government policies and the EU perspective," Energy Policy, Elsevier, vol. 42(C), pages 377-391.
    10. Montes, German Martinez & Martin, Enrique Prados & Bayo, Javier Alegre & Garcia, Javier Ordoñez, 2011. "The applicability of computer simulation using Monte Carlo techniques in windfarm profitability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4746-4755.
    11. Ananda, Jayanath & Herath, Gamini, 2009. "A critical review of multi-criteria decision making methods with special reference to forest management and planning," Ecological Economics, Elsevier, vol. 68(10), pages 2535-2548, August.
    12. Lüthi, Sonja & Prässler, Thomas, 2011. "Analyzing policy support instruments and regulatory risk factors for wind energy deployment--A developers' perspective," Energy Policy, Elsevier, vol. 39(9), pages 4876-4892, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dragomir, George & Șerban, Alexandru & Năstase, Gabriel & Brezeanu, Alin Ionuț, 2016. "Wind energy in Romania: A review from 2009 to 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 129-143.
    2. Albara M. Mustafa & Abbas Barabadi & Tore Markeset & Masoud Naseri, 2021. "An overall performance index for wind farms: a case study in Norway Arctic region," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 938-950, October.
    3. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    4. Diógenes, Jamil Ramsi Farkat & Claro, João & Rodrigues, José Coelho, 2019. "Barriers to onshore wind farm implementation in Brazil," Energy Policy, Elsevier, vol. 128(C), pages 253-266.
    5. Dejun Qiu & Hasan Dinçer & Serhat Yüksel & Gözde Gülseven Ubay, 2020. "Multi-Faceted Analysis of Systematic Risk-Based Wind Energy Investment Decisions in E7 Economies Using Modified Hybrid Modeling with IT2 Fuzzy Sets," Energies, MDPI, vol. 13(6), pages 1-25, March.
    6. Farkat Diógenes, Jamil Ramsi & Coelho Rodrigues, José & Farkat Diógenes, Maria Caroline & Claro, João, 2020. "Overcoming barriers to onshore wind farm implementation in Brazil," Energy Policy, Elsevier, vol. 138(C).
    7. Zhang, Yao & Zhang, Yuxin & Gong, Chao & Dinçer, Hasan & Yüksel, Serhat, 2022. "An integrated hesitant 2-tuple Pythagorean fuzzy analysis of QFD-based innovation cost and duration for renewable energy projects," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    2. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    3. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.
    4. Nikolaos Antonakakis & Rangan Gupta & Aviral K. Tiwari, 2018. "Time-varying correlations between trade balance and stock prices in the United States over the period 1792 to 2013," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(4), pages 795-806, October.
    5. Tim Oliver Berg, 2013. "Cross-country evidence on the relation between stock prices and the current account," Applied Economics, Taylor & Francis Journals, vol. 45(16), pages 2267-2277, June.
    6. Hojatollah Khedrigharibvand & Hossein Azadi & Dereje Teklemariam & Ehsan Houshyar & Philippe Maeyer & Frank Witlox, 2019. "Livelihood alternatives model for sustainable rangeland management: a review of multi-criteria decision-making techniques," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 11-36, February.
    7. Holinski, N. & Vermeulen, R., 2009. "The international wealth effect : a global error-correcting analysis," Research Memorandum 019, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    8. Siyal, Shahid Hussain & Mörtberg, Ulla & Mentis, Dimitris & Welsch, Manuel & Babelon, Ian & Howells, Mark, 2015. "Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach," Energy, Elsevier, vol. 83(C), pages 447-461.
    9. Enders, Zeno & Müller, Gernot J. & Scholl, Almuth, 2011. "How do fiscal and technology shocks affect real exchange rates?: New evidence for the United States," Journal of International Economics, Elsevier, vol. 83(1), pages 53-69, January.
    10. Komain Jiranyakul, 2017. "Asset Prices, Real Exchange Rate and Current Account Fluctuations: Some Structural VAR Evidence for Thailand," Business and Economic Research, Macrothink Institute, vol. 7(2), pages 163-177, December.
    11. Goodness C. Aye & Rangan Gupta & Mampho P. Modise, 2015. "Do Stock Prices Impact Consumption and Interest Rate in South Africa? Evidence from a Time-varying Vector Autoregressive Model," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 14(2), pages 176-196, August.
    12. Alexander Guschanski & Engelbert Stockhammer, 2017. "Are current accounts driven by competitiveness or asset prices? A synthetic model and an empirical test," Working Papers PKWP1716, Post Keynesian Economics Society (PKES).
    13. Mentis, Dimitrios & Siyal, Shahid Hussain & Korkovelos, Alexandros & Howells, Mark, 2016. "A geospatial assessment of the techno-economic wind power potential in India using geographical restrictions," Renewable Energy, Elsevier, vol. 97(C), pages 77-88.
    14. Mthuli Ncube & Eliphas Ndou, 2013. "Working Paper 169 - Monetary Policy and Exchange Rate Shocks on South African Trade Balance," Working Paper Series 448, African Development Bank.
    15. Rodrigo A. Estévez & Valeria Espinoza & Roberto D. Ponce Oliva & Felipe Vásquez-Lavín & Stefan Gelcich, 2021. "Multi-Criteria Decision Analysis for Renewable Energies: Research Trends, Gaps and the Challenge of Improving Participation," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    16. Nils Holinski & Robert Vermeulen, 2012. "The international wealth channel: a global error-correcting analysis," Empirical Economics, Springer, vol. 43(3), pages 985-1010, December.
    17. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Nei Yoshihiro Soma & Carlos Eduardo Sanches da Silva, 2021. "MCDM-Based R&D Project Selection: A Systematic Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-34, October.
    18. Büyüközkan, Gülçin & Güleryüz, Sezin, 2017. "Evaluation of Renewable Energy Resources in Turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations," Energy, Elsevier, vol. 123(C), pages 149-163.
    19. Rahim Moltames & Mohammad Sajad Naghavi & Mahyar Silakhori & Younes Noorollahi & Hossein Yousefi & Mostafa Hajiaghaei-Keshteli & Behzad Azizimehr, 2022. "Multi-Criteria Decision Methods for Selecting a Wind Farm Site Using a Geographic Information System (GIS)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    20. V. M. Jayasooriya & S. Muthukumaran & A. W. M. Ng & B. J. C. Perera, 2018. "Multi Criteria Decision Making in Selecting Stormwater Management Green Infrastructure for Industrial areas Part 2: A Case Study with TOPSIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4297-4312, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:975-987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.