IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032125000243.html
   My bibliography  Save this article

Flow phenomena inside the Ranque-Hilsch vortex tube: A state-of-the-art review

Author

Listed:
  • Awan, O.A.A.
  • Sager, R.
  • Petersen, N.H.
  • Wirsum, M.
  • Juntasaro, E.

Abstract

Energy has become a driving force in the modern world. Much attention is being given to producing electricity from renewable sources to reduce the carbon footprint. However, this is not enough to meet the global energy challenge. Energy efficiency and improved energy usage are equally important to achieve sustainability quickly. Therefore, it is necessary to use devices that can increase energy efficiency and utilization. One such device is the vortex tube, which has significant potential for energy-efficient cooling and separation processes. It also has the advantages of low maintenance and capital costs. This review provides a comprehensive overview of recent work in the field of vortex tubes. Firstly, a general overview of the current status of the research work is presented, which is based on existing review studies. In the next step, the research carried out in the last five years is categorized into the broad categories of computational and experimental work, as well as different subcategories depending on the area of research. This study synthesizes the new findings on some already formulated research areas such as the choice of turbulence model, working fluid, etc. and novel research areas such as geometric modifications and arrangement of vortex tubes. It also provides insightful conclusions and future recommendations for the optimization of vortex tubes. The primary aim of this review is to present the current state of research and identify potential research gaps for future research on vortex tubes.

Suggested Citation

  • Awan, O.A.A. & Sager, R. & Petersen, N.H. & Wirsum, M. & Juntasaro, E., 2025. "Flow phenomena inside the Ranque-Hilsch vortex tube: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032125000243
    DOI: 10.1016/j.rser.2025.115351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125000243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Subudhi, Sudhakar & Sen, Mihir, 2015. "Review of Ranque–Hilsch vortex tube experiments using air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 172-178.
    2. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    3. Zhang, Bo & Guo, Xiangji, 2018. "Prospective applications of Ranque–Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 135-150.
    4. Kandil, Hamdy A. & Abdelghany, Seif T., 2015. "Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube," Energy, Elsevier, vol. 84(C), pages 207-218.
    5. Li, Yinlong & Yan, Gang & Yang, Yuqing & Dong, Peiwen & Liu, Guoqiang, 2024. "Thermodynamic analysis of new configurations of auto-cascade refrigeration cycles integrating the vortex tube," Energy, Elsevier, vol. 308(C).
    6. Thakare, Hitesh R. & Monde, Aniket & Parekh, Ashok D., 2015. "Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1043-1071.
    7. Farzaneh-Gord, Mahmood & Sadi, Meisam, 2014. "Improving vortex tube performance based on vortex generator design," Energy, Elsevier, vol. 72(C), pages 492-500.
    8. Oberti, Raphaël & Lagrandeur, Junior & Poncet, Sébastien, 2023. "Numerical benchmark of a Ranque–Hilsch vortex tube working with subcritical carbon dioxide," Energy, Elsevier, vol. 263(PC).
    9. Manimaran, R., 2016. "Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio," Energy, Elsevier, vol. 107(C), pages 17-28.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ambedkar, P. & Dutta, T., 2023. "CFD simulation and thermodynamic analysis of energy separation in vortex tube using different inert gases at different inlet pressures and cold mass fractions," Energy, Elsevier, vol. 263(PB).
    2. Jing, Dongliang & Yan, Gang & Li, Yinlong & Xiong, Tong & Liu, Guoqiang, 2025. "A review of refrigerant-based vortex tube separation characteristics: Devices, thermodynamic cycles and system experiments," Energy, Elsevier, vol. 320(C).
    3. Manimaran, R., 2017. "Computational analysis of flow features and energy separation in a counter-flow vortex tube based on number of inlets," Energy, Elsevier, vol. 123(C), pages 564-578.
    4. Zhang, Bo & Guo, Xiangji, 2018. "Prospective applications of Ranque–Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 135-150.
    5. Zhang, Bo & Guo, Yaning & Li, Nian & He, Peng & Guo, Xiangji, 2023. "Experimental study of gas–liquid behavior in three-flow vortex tube with sintered metal porous material as the drain part," Energy, Elsevier, vol. 263(PA).
    6. Manimaran, R., 2016. "Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio," Energy, Elsevier, vol. 107(C), pages 17-28.
    7. Oberti, Raphaël & Lagrandeur, Junior & Poncet, Sébastien, 2023. "Numerical benchmark of a Ranque–Hilsch vortex tube working with subcritical carbon dioxide," Energy, Elsevier, vol. 263(PC).
    8. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    9. Angelo Maiorino & Ciro Aprea & Manuel Gesù Del Duca, 2021. "A Flexible Top-Down Numerical Modeling of an Air-Cooled Finned-Tube CO 2 Trans-Critical Gas Cooler," Energies, MDPI, vol. 14(22), pages 1-30, November.
    10. Ding, Hongbing & Dong, Yuanyuan & Yang, Yan & Wen, Chuang, 2024. "Performance and energy utilization analysis of transcritical CO2 two-phase ejector considering non-equilibrium phase changes," Applied Energy, Elsevier, vol. 372(C).
    11. Fang, Lide & Liu, Yueyuan & Zheng, Meng & Liu, Xu & Lan, Kang & Wang, Fan & Yan, Xiaoli, 2023. "A new type of velocity averaging tube vortex flow sensor and measurement model of mass flow rate," Energy, Elsevier, vol. 283(C).
    12. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    13. Shahsavar, Amin & Jahangiri, Ali & Qatarani nejad, Amir & Ahmadi, Gholamreza & Karamzadeh dizaji, Alireza, 2022. "Energy and exergy analysis and multi-objective optimization of using combined vortex tube-photovoltaic/thermal system in city gate stations," Renewable Energy, Elsevier, vol. 196(C), pages 1017-1028.
    14. Zhang, Quan & Qin, Bin & Rao, Jingyuan & Lu, Zhaijun, 2025. "Experimental study on dynamic process and flow rate of liquid CO2 discharge under gas pressurization," Energy, Elsevier, vol. 330(C).
    15. William Ferretto & Luca Molinaroli & Fabrizio Codella, 2025. "Performance Assessment of R-454C, R-449A, and R-744 in Food Retail Refrigeration Systems," Energies, MDPI, vol. 18(3), pages 1-18, January.
    16. Li, Yinlong & Yan, Gang & Jing, Dongliang & Liu, Guoqiang & Llopis, Rodrigo, 2025. "A novel online measurement method for compositions and energy performance of an auto-cascade refrigeration system," Energy, Elsevier, vol. 318(C).
    17. Yijian He & Yufu Zheng & Jianguang Zhao & Qifei Chen & Lunyuan Zhang, 2024. "Study of a Novel Hybrid Refrigeration System, with Natural Refrigerants and Ultra-Low Carbon Emissions, for Air Conditioning," Energies, MDPI, vol. 17(4), pages 1-19, February.
    18. Shiravi, Amir hossein & Ghanbarpour, Morteza & Palm, Bjorn, 2023. "Experimental evaluation of the effect of mechanical subcooling on a hydrocarbon heat pump system," Energy, Elsevier, vol. 274(C).
    19. Konstantin I. Matveev & Jacob Leachman, 2021. "Numerical Simulations of Cryogenic Hydrogen Cooling in Vortex Tubes with Smooth Transitions," Energies, MDPI, vol. 14(5), pages 1-13, March.
    20. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032125000243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.