IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp1017-1028.html
   My bibliography  Save this article

Energy and exergy analysis and multi-objective optimization of using combined vortex tube-photovoltaic/thermal system in city gate stations

Author

Listed:
  • Shahsavar, Amin
  • Jahangiri, Ali
  • Qatarani nejad, Amir
  • Ahmadi, Gholamreza
  • Karamzadeh dizaji, Alireza

Abstract

The goal of this study is to investigate the possibility of replacing the water bath heater and pressure relief valve with a hybrid vortex tube-photovoltaic/thermal system in pressure reduction stations like city gate stations. By using this system, both the natural gas pressure can be reduced to the desired level (from 5-7 MPa to 1.5–2 MPa) and electricity can be generated. The effect of cold mass fraction of vortex tube (0.01–0.1), air mass flow rate (0.569–5.69 kg/s) as well as the length (1–10 m), width (0.5–5 m) and depth (0.1–0.5 m) of the photovoltaic/thermal system on the energy and exergy performance of the hybrid vortex tube-photovoltaic/thermal system is investigated. Then, the genetic algorithm based two-objective optimization is used to find the appropriate value of these parameters to maximize the annual average first-law efficiency (ηI) and second-law efficiency (ηII) of the hybrid system. It was found that the ηI and ηII of the optimal system are respectively 74.05% and 19.46%. Moreover, it was observed that the use of optimal system causes a reduction in the CO2 emission by 27.7-tons per year.

Suggested Citation

  • Shahsavar, Amin & Jahangiri, Ali & Qatarani nejad, Amir & Ahmadi, Gholamreza & Karamzadeh dizaji, Alireza, 2022. "Energy and exergy analysis and multi-objective optimization of using combined vortex tube-photovoltaic/thermal system in city gate stations," Renewable Energy, Elsevier, vol. 196(C), pages 1017-1028.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1017-1028
    DOI: 10.1016/j.renene.2022.07.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Shehadeh, Shadi H. & Aly, Hamed H. & El-Hawary, M.E., 2019. "Investigation of photovoltaic coverage ratio for maximum overall thermal energy of photovoltaic thermal system," Renewable Energy, Elsevier, vol. 134(C), pages 757-768.
    3. Zhang, Bo & Guo, Xiangji, 2018. "Prospective applications of Ranque–Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 135-150.
    4. Piero Danieli & Massimo Masi & Andrea Lazzaretto & Gianluca Carraro & Gabriele Volpato, 2022. "A Smart Energy Recovery System to Avoid Preheating in Gas Grid Pressure Reduction Stations," Energies, MDPI, vol. 15(1), pages 1-31, January.
    5. Shahsavar, Amin & Rajabi, Yalda, 2018. "Exergoeconomic and enviroeconomic study of an air based building integrated photovoltaic/thermal (BIPV/T) system," Energy, Elsevier, vol. 144(C), pages 877-886.
    6. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alshibil, Ahssan M.A. & Farkas, István & Víg, Piroska, 2023. "Thermodynamical analysis and evaluation of louver-fins based hybrid bi-fluid photovoltaic/thermal collector systems," Renewable Energy, Elsevier, vol. 206(C), pages 1120-1131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    2. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    3. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    4. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    5. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    6. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    7. Janssens, Jochen & Van den Bergh, Joos & Sörensen, Kenneth & Cattrysse, Dirk, 2015. "Multi-objective microzone-based vehicle routing for courier companies: From tactical to operational planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 222-231.
    8. H. Liao & Q. Wu, 2013. "Multi-objective optimization by learning automata," Journal of Global Optimization, Springer, vol. 55(2), pages 459-487, February.
    9. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    10. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    11. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    12. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    13. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    14. Schmidt, Adam & Albert, Laura A. & Zheng, Kaiyue, 2021. "Risk management for cyber-infrastructure protection: A bi-objective integer programming approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    16. Juan Carlos Bravo-Rodríguez & Juan Carlos del-Pino-López & Pedro Cruz-Romero, 2019. "A Survey on Optimization Techniques Applied to Magnetic Field Mitigation in Power Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    17. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    18. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    19. Zeel Maheshwari & Rama Ramakumar, 2017. "Smart Integrated Renewable Energy Systems (SIRES): A Novel Approach for Sustainable Development," Energies, MDPI, vol. 10(8), pages 1-22, August.
    20. S. Mohammad S. Mahmoudi & Sina Salehi & Mortaza Yari & Marc A. Rosen, 2017. "Exergoeconomic Performance Comparison and Optimization of Single-Stage Absorption Heat Transformers," Energies, MDPI, vol. 10(4), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1017-1028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.