IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7607-d678922.html
   My bibliography  Save this article

A Flexible Top-Down Numerical Modeling of an Air-Cooled Finned-Tube CO 2 Trans-Critical Gas Cooler

Author

Listed:
  • Angelo Maiorino

    (Department of Industrial Engineering, Università di Salerno, 84084 Fisciano, Italy)

  • Ciro Aprea

    (Department of Industrial Engineering, Università di Salerno, 84084 Fisciano, Italy)

  • Manuel Gesù Del Duca

    (Department of Industrial Engineering, Università di Salerno, 84084 Fisciano, Italy)

Abstract

Carbon dioxide trans-critical refrigeration systems have been deeply investigated over the last years, with the aim to improve their performance by using several possible technical solutions. However, most of them lead to a more complex and expensive system, and therefore a trade-off is always needed to identify the best viable solution. Therefore, many efforts have also been focused on the study of a critical component of the basic carbon dioxide trans-critical cycle, which is the gas cooler, especially by numerical simulations. This work shows a new flexible approach to numerically model an air-cooled finned-tube CO 2 trans-critical gas cooler integrating a Top-Down methodology with a Finite Difference Method to solve the governing equation of the thermodynamic processes involved. The model was developed to reproduce the behavior of an experimental CO 2 refrigeration system, which provided the experimental data used for its validation. In detail, the model showed a good agreement with the experimental data, with average deviations of 1 K (0.3%), 0.9 bar (1%) and 0.15 kW (2.8%) regarding the refrigerant outlet temperature, the refrigerant outlet pressure and the rejected heat, respectively. The Top-Down numerical approach slightly outperformed the performance of previous numerical models available in the literature. Furthermore, the analysis of the refrigerant temperature and pressure along the tubes and rows also shows that the model can reproduce their behavior consistently and accordingly to data reported in the literature. The proposed approach can be used for detailed thermo-economic analysis of the whole refrigeration system, with the aim to optimize the design of the gas cooler.

Suggested Citation

  • Angelo Maiorino & Ciro Aprea & Manuel Gesù Del Duca, 2021. "A Flexible Top-Down Numerical Modeling of an Air-Cooled Finned-Tube CO 2 Trans-Critical Gas Cooler," Energies, MDPI, vol. 14(22), pages 1-30, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7607-:d:678922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixing Zheng & Yiyan Zhang & Lifen Hao & Haojie Lian & Jianqiang Deng & Wei Lu, 2022. "Modelling, Optimization, and Experimental Studies of Refrigeration CO 2 Ejectors: A Review," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
    2. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    3. Yikai Wang & Yifan He & Yulong Song & Xiang Yin & Feng Cao & Xiaolin Wang, 2021. "Energy and Exergy Analysis of the Air Source Transcritical CO 2 Heat Pump Water Heater Using CO 2 -Based Mixture as Working Fluid," Energies, MDPI, vol. 14(15), pages 1-18, July.
    4. Shiravi, Amir hossein & Ghanbarpour, Morteza & Palm, Bjorn, 2023. "Experimental evaluation of the effect of mechanical subcooling on a hydrocarbon heat pump system," Energy, Elsevier, vol. 274(C).
    5. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
    7. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    8. Zhihua Wang & Yujia Zhang & Fenghao Wang & Guichen Li & Kaiwen Xu, 2021. "Performance Optimization and Economic Evaluation of CO 2 Heat Pump Heating System Coupled with Thermal Energy Storage," Sustainability, MDPI, vol. 13(24), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7607-:d:678922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.