IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032124009936.html
   My bibliography  Save this article

Heat transfer to supercritical fluids in horizontal heated flow of emerging energy systems

Author

Listed:
  • Pan, Yue
  • Zhai, Yuling
  • Wang, Hua
  • Li, Zhouhang

Abstract

A critical review of heat transfer to supercritical pressure fluids in horizontal flow under heating conditions is presented with the goal of obtaining a perspective on its peculiarities and guiding the development of emerging energy systems. The involving fluids include water, carbon dioxide, refrigerants, and hydrocarbon fuels. The flow channel is a circular tube, heated mostly by electricity. Experimental observations show that heat transfer in the lower half, especially at the bottom side, is much more sensitive to the change of operating conditions. The thermal entrance effect causes a regular enhancement of heat transfer, in contrast to the fluctuant impairment in vertical flow. Further summary leads to some general rules of supercritical heat transfer in horizontal flow. First, the axial profile of wall temperatures can be classified into three types, the boundaries of which correspond to buoyancy parameter of 10 and 90. Secondly, the layout of thermocouples in existing experiments is not always proper, as buoyancy-affected cases were mishandled by only one thermocouple circumferentially. A preliminary design process is proposed to guide a proper experimental program. Finally, existing Nusselt correlations are assessed by local and average heat transfer data. An idea of quantifying thermal entrance effect is proposed on the basis of asymptotic hypothesis, and a promising strategy is recommended towards the development of a more general correlation.

Suggested Citation

  • Pan, Yue & Zhai, Yuling & Wang, Hua & Li, Zhouhang, 2025. "Heat transfer to supercritical fluids in horizontal heated flow of emerging energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124009936
    DOI: 10.1016/j.rser.2024.115267
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, Ahsan & Nadeem, Talha Bin & Naqvi, Asad A. & Siddiqui, Mubashir Ali & Khan, Muhammad Hamza & Bin Zahid, Muhammad Saad & Ammar, Syed Muhammad, 2022. "Investigation of PV utilizability on university buildings: A case study of Karachi, Pakistan," Renewable Energy, Elsevier, vol. 195(C), pages 238-251.
    2. Tian, Ran & Xu, Yunting & Shi, Lin & Song, Panpan & Wei, Mingshan, 2020. "Mixed convection heat transfer of supercritical pressure R1234yf in horizontal flow: Comparison study as alternative to R134a in organic Rankine cycles," Energy, Elsevier, vol. 205(C).
    3. A. N. Oumer & N. T. Rao & F. Basraw & H. Ibrahim, 2016. "Numerical simulation on flow and heat transfer characteristics of supercritical fluids in mini-channels," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 2(3), pages 81-86.
    4. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    5. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
    6. Huang, Dan & Wu, Zan & Sunden, Bengt & Li, Wei, 2016. "A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress," Applied Energy, Elsevier, vol. 162(C), pages 494-505.
    7. Cheng, Liangyuan & Xu, Jinliang & Cao, Wenxuan & Zhou, Kaiping & Liu, Guanglin, 2024. "Supercritical carbon dioxide heat transfer in horizontal tube based on the Froude number analysis," Energy, Elsevier, vol. 294(C).
    8. Theologou, Konstantinos & Mertz, Rainer & Laurien, Eckart & Starflinger, Jörg, 2022. "Experimental investigations on heat transfer of CO2 under supercritical pressure in heated horizontal pipes," Energy, Elsevier, vol. 254(PA).
    9. Wang, Jiangtao & Zhai, Yuling & Wang, Hua & Li, Zhouhang, 2023. "Heat transfer performance of supercritical R134a in a U-bend vapor generator for transcritical ORC system," Energy, Elsevier, vol. 276(C).
    10. Ehsan, M. Monjurul & Guan, Zhiqiang & Klimenko, A.Y., 2018. "A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 658-675.
    11. Wang, Yiming & Xie, Gongnan & Zhu, Huaitao & Yuan, Han, 2023. "Assessment on energy and exergy of combined supercritical CO2 Brayton cycles with sizing printed-circuit-heat-exchangers," Energy, Elsevier, vol. 263(PA).
    12. Wang, Dabiao & Tian, Ran & Zhang, Yue & Li, LanLan & Ma, Yuezheng & Shi, Lin & Li, Hui, 2019. "Heat transfer investigation of supercritical R134a for trans-critical organic Rankine cycle system," Energy, Elsevier, vol. 169(C), pages 542-557.
    13. Li, Zhouhang & Tang, Guoli & Wu, Yuxin & Zhai, Yuling & Xu, Jianxin & Wang, Hua & Lu, Junfu, 2016. "Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement," Applied Energy, Elsevier, vol. 178(C), pages 126-141.
    14. Ehsan, M. Monjurul & Awais, Muhammad & Lee, Sangkyoung & Salehin, Sayedus & Guan, Zhiqiang & Gurgenci, Hal, 2023. "Potential prospects of supercritical CO2 power cycles for commercialisation: Applicability, research status, and advancement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
    2. Wang, Yuan & Ren, Jing-Jie & Bi, Ming-Shu, 2023. "Analysis on the heat transfer performance of supercritical liquified natural gas in horizontal tubes during regasification process," Energy, Elsevier, vol. 262(PA).
    3. Liu, Xinxin & Xu, Xiaoxiao & Liu, Chao & Bai, Wanjin & Dang, Chaobin, 2018. "Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles," Energy, Elsevier, vol. 147(C), pages 1-14.
    4. Xinxin Liu & Shuoshuo Li & Liang Liu & Chao He & Zhuang Sun & Faruk Özdemir & Muhammad Aziz & Po-Chih Kuo, 2022. "Research Progress on Convective Heat Transfer Characteristics of Supercritical Fluids in Curved Tube," Energies, MDPI, vol. 15(22), pages 1-23, November.
    5. Wang, Yuan & Bi, Ming-Shu & Gao, Wei & Zhang, Jing-Hao & Ren, Jing-Jie, 2024. "Research on heat transfer characteristics and prediction methods of supercritical liquified natural gas flowing horizontally under the influence of buoyancy," Energy, Elsevier, vol. 313(C).
    6. Cheng, Liangyuan & Xu, Jinliang & Cao, Wenxuan & Zhou, Kaiping & Liu, Guanglin, 2024. "Supercritical carbon dioxide heat transfer in horizontal tube based on the Froude number analysis," Energy, Elsevier, vol. 294(C).
    7. Dingchen Wu & Mingshan Wei & Ran Tian & Siyu Zheng & Jundi He, 2022. "A Review of Flow and Heat Transfer Characteristics of Supercritical Carbon Dioxide under Cooling Conditions in Energy and Power Systems," Energies, MDPI, vol. 15(23), pages 1-28, November.
    8. Cui, Xinying & Guo, Jiangfeng & Huai, Xiulan & Zhang, Haiyan & Cheng, Keyong & Zhou, Jingzhi, 2019. "Numerical investigations on serpentine channel for supercritical CO2 recuperator," Energy, Elsevier, vol. 172(C), pages 517-530.
    9. Cheng, Liangyuan & Xu, Jinliang, 2024. "Experimental investigation of non-uniform heating effect on flow and heat transfer of supercritical carbon dioxide:An application to solar parabolic trough collector," Renewable Energy, Elsevier, vol. 236(C).
    10. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Li, Zhouhang & Tang, Guoli & Wu, Yuxin & Zhai, Yuling & Xu, Jianxin & Wang, Hua & Lu, Junfu, 2016. "Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement," Applied Energy, Elsevier, vol. 178(C), pages 126-141.
    12. Guo, Yumin & Guo, Xinru & Wang, Jiangfeng & Li, Zhanying & Cheng, Shangfang & Wang, Shunsen, 2024. "Comprehensive analysis and optimization for a novel combined heating and power system based on self-condensing transcritical CO2 Rankine cycle driven by geothermal energy from thermodynamic, exergoeco," Energy, Elsevier, vol. 300(C).
    13. Wang, Yuan & Ren, Jing-Jie & Gao, Wei & Zhang, Jing-Hao & Yu, Guo-jie & Bi, Ming-Shu, 2024. "Mechanism analysis on heat transfer of supercritical LNG in horizontal U-bend tube," Energy, Elsevier, vol. 304(C).
    14. Wang, Jiangtao & Zhai, Yuling & Wang, Hua & Li, Zhouhang, 2023. "Heat transfer performance of supercritical R134a in a U-bend vapor generator for transcritical ORC system," Energy, Elsevier, vol. 276(C).
    15. Qiaoling Zhang & Kangming Wang & Ziyuan Yu & Haoran Ma & Biyun Huang, 2024. "Convection Heat-Transfer Characteristics of Supercritical Pressure RP-3 in Horizontal Microchannels," Energies, MDPI, vol. 17(13), pages 1-20, July.
    16. Jianguo Yan & Shouchun Liu & Pengcheng Guo & Qincheng Bi, 2020. "Experiments on Heat Transfer of Supercritical Pressure Kerosene in Mini Tube under Ultra-High Heat Fluxes," Energies, MDPI, vol. 13(5), pages 1-14, March.
    17. Chen, Zhipeng & Han, Changliang & Zheng, Hao & Wu, Yizhong, 2025. "An investigation on convective regasification heat transfer performance of supercritical methane inside horizontal heated circular tubes," Energy, Elsevier, vol. 314(C).
    18. Tian, Ran & Xu, Yunting & Shi, Lin & Song, Panpan & Wei, Mingshan, 2020. "Mixed convection heat transfer of supercritical pressure R1234yf in horizontal flow: Comparison study as alternative to R134a in organic Rankine cycles," Energy, Elsevier, vol. 205(C).
    19. Yao, Yecheng & Zhu, Qi’an & Li, Zhouhang, 2020. "Performance of helically coiled gas heaters in supercritical CO2 Rankine cycles: A detailed assessment under convective boundary condition," Energy, Elsevier, vol. 195(C).
    20. Li, Zhouhang & Zhai, Yuling & Bi, Dapeng & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2017. "Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles," Energy, Elsevier, vol. 140(P1), pages 530-545.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124009936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.