IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224040416.html
   My bibliography  Save this article

An investigation on convective regasification heat transfer performance of supercritical methane inside horizontal heated circular tubes

Author

Listed:
  • Chen, Zhipeng
  • Han, Changliang
  • Zheng, Hao
  • Wu, Yizhong

Abstract

The regasification technology in natural gas applications mostly involves supercritical methane (sCH4) heat transfer inside horizontal heated circular tubes. Precise evaluation of heat transfer behaviors and wall temperature is valuable for optimal design of advanced regasification equipment such as submerged combustion vaporizer (SCV) and intermediate fluid vaporizer (IFV). In this paper, the convective regasification heat transfer performance of sCH4 is investigated. Different heat transfer modes about normal heat transfer (NHT) and heat transfer deterioration (HTD) are observed. The mechanism of bimodal phenomenon is revealed through dividing five zones. Moreover, the transition law between NHT and HTD is deeply analyzed by holding the pseudo-boiling concept. Results show that there exist the multiple wall temperature peaks when HTD occurs. Two peaks mainly result from buoyancy effect near the wall region and shear stress in the mainstream region. Moreover, HTD is relevant to the rapid growth and large temperature gradient of gas-like fluid. The critical supercritical boiling number yielding for sCH4 is 8.415 × 10−4∼8.789 × 10−4. Finally, a new criterion concerning with critical heat flux is proposed to judge the occurrence of HTD. The present work lays a new way to understand the sCH4 regasification mechanism and provides reference for efficient operation of SCV and IFV.

Suggested Citation

  • Chen, Zhipeng & Han, Changliang & Zheng, Hao & Wu, Yizhong, 2025. "An investigation on convective regasification heat transfer performance of supercritical methane inside horizontal heated circular tubes," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040416
    DOI: 10.1016/j.energy.2024.134263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Jiangfeng & Song, Jian & Narayan, Surya & Pervunin, Konstantin S. & Markides, Christos N., 2023. "Numerical investigation of the thermal-hydraulic performance of horizontal supercritical CO2 flows with half-wall heat-flux conditions," Energy, Elsevier, vol. 264(C).
    2. Cheng, Liangyuan & Xu, Jinliang & Cao, Wenxuan & Zhou, Kaiping & Liu, Guanglin, 2024. "Supercritical carbon dioxide heat transfer in horizontal tube based on the Froude number analysis," Energy, Elsevier, vol. 294(C).
    3. Theologou, Konstantinos & Mertz, Rainer & Laurien, Eckart & Starflinger, Jörg, 2022. "Experimental investigations on heat transfer of CO2 under supercritical pressure in heated horizontal pipes," Energy, Elsevier, vol. 254(PA).
    4. Oberti, Raphaël & Lagrandeur, Junior & Poncet, Sébastien, 2023. "Numerical benchmark of a Ranque–Hilsch vortex tube working with subcritical carbon dioxide," Energy, Elsevier, vol. 263(PC).
    5. Balcombe, Paul & Staffell, Iain & Kerdan, Ivan Garcia & Speirs, Jamie F. & Brandon, Nigel P. & Hawkes, Adam D., 2021. "How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis," Energy, Elsevier, vol. 227(C).
    6. Wang, Yuan & Ren, Jing-Jie & Gao, Wei & Zhang, Jing-Hao & Yu, Guo-jie & Bi, Ming-Shu, 2024. "Mechanism analysis on heat transfer of supercritical LNG in horizontal U-bend tube," Energy, Elsevier, vol. 304(C).
    7. Carmona, Roberto & Miranda, Ricardo & Rodriguez, Pablo & Garrido, René & Serafini, Daniel & Rodriguez, Angel & Mena, Marcelo & Fernandez Gil, Alejandro & Valdes, Javier & Masip, Yunesky, 2024. "Assessment of the green hydrogen value chain in cases of the local industry in Chile applying an optimization model," Energy, Elsevier, vol. 300(C).
    8. Wahl, Andreas & Mertz, Rainer & Laurien, Eckart & Starflinger, Jörg, 2022. "Heat transfer deterioration in vertical sCO2 cooling in 3 mm tube," Energy, Elsevier, vol. 254(PB).
    9. Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Mahian, Omid & Kang, Yong Tae, 2024. "CFD study of rib-enhanced printed circuit heat exchangers for precoolers in solar power plants' supercritical CO2 cycle," Energy, Elsevier, vol. 292(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Liangyuan & Xu, Jinliang, 2024. "Experimental investigation of non-uniform heating effect on flow and heat transfer of supercritical carbon dioxide:An application to solar parabolic trough collector," Renewable Energy, Elsevier, vol. 236(C).
    2. Li, Haozhe & Song, Meiqi & Liu, Xiaojing, 2024. "Interpretable machine learning-based prediction and analysis of supercritical fluid heat transfer characteristics at different boundary conditions," Energy, Elsevier, vol. 308(C).
    3. Wang, Yuan & Ren, Jing-Jie & Bi, Ming-Shu, 2023. "Analysis on the heat transfer performance of supercritical liquified natural gas in horizontal tubes during regasification process," Energy, Elsevier, vol. 262(PA).
    4. Wang, Yuan & Bi, Ming-Shu & Gao, Wei & Zhang, Jing-Hao & Ren, Jing-Jie, 2024. "Research on heat transfer characteristics and prediction methods of supercritical liquified natural gas flowing horizontally under the influence of buoyancy," Energy, Elsevier, vol. 313(C).
    5. Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Kang, Yong Tae, 2025. "Developing a novel battery thermal management system utilizing supercritical CO2 as the cooling medium," Applied Energy, Elsevier, vol. 381(C).
    6. Li, Zhen & Lu, Daogang & Lin, Manjiao & Cao, Qiong, 2024. "Investigation of the thermal-hydraulic characteristics of SCO2 in a modified hybrid airfoil channel," Energy, Elsevier, vol. 308(C).
    7. Cheng, Liangyuan & Xu, Jinliang & Cao, Wenxuan & Zhou, Kaiping & Liu, Guanglin, 2024. "Supercritical carbon dioxide heat transfer in horizontal tube based on the Froude number analysis," Energy, Elsevier, vol. 294(C).
    8. Sogut, M. Ziya, 2024. "Entropy-based environmental analyses of marine fuel preferences for onboard ships," Energy, Elsevier, vol. 305(C).
    9. Mao, Shang & Zhou, Tao & Liu, Wenbin & Hu, Cheng & Xu, Peng, 2023. "Study on particle deposition performance in liquid lead-bismuth eutectic and supercritical CO2 heat exchanger," Energy, Elsevier, vol. 285(C).
    10. Lijuan Yang & Fangcheng Liao & Yong He, 2025. "Towards Decarbonization: Sustainable Incentives in a Price-Competitive Maritime Supply Chain with Environmentally Conscious Shippers," Sustainability, MDPI, vol. 17(5), pages 1-20, February.
    11. Xie, Cheng & Huang, Liwen & Wang, Rui & Deng, Jian & Shu, Yaqing & Jiang, Dan, 2022. "Research on quantitative risk assessment of fuel leak of LNG-fuelled ship during lock transition process," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Yang, Zimu & Jiang, Hongsheng & Zhuge, Weilin & Qian, Yuping & Zhang, Yangjun, 2024. "Design of a partial discharge shrouded impeller for the centrifugal compressor of supercritical carbon dioxide power cycles," Energy, Elsevier, vol. 307(C).
    13. Mohan Anantharaman & Abdullah Sardar & Rabiul Islam, 2025. "Decarbonization of Shipping and Progressing Towards Reducing Greenhouse Gas Emissions to Net Zero: A Bibliometric Analysis," Sustainability, MDPI, vol. 17(7), pages 1-24, March.
    14. Sogut, M. Ziya, 2023. "A comparative analysis of a dry bulk carrier's fuel preference in terms of entropy and environmental sustainability," Energy, Elsevier, vol. 275(C).
    15. Yang, Jiaqi & Ma, Yuan & Wang, Wujun, 2023. "An analytical method for quickly evaluating the performances of refractory alloys in sCO2 Brayton cycle applications," Energy, Elsevier, vol. 283(C).
    16. Wang, Jiangtao & Zhai, Yuling & Wang, Hua & Li, Zhouhang, 2023. "Heat transfer performance of supercritical R134a in a U-bend vapor generator for transcritical ORC system," Energy, Elsevier, vol. 276(C).
    17. Draskic, Marko & Bugeat, Benjamin & Pecnik, Rene, 2024. "The steady behavior of the supercritical carbon dioxide natural circulation loop," Energy, Elsevier, vol. 294(C).
    18. Alessia Amato & Konstantina Tsigkou & Alessandro Becci & Francesca Beolchini & Nicolò M. Ippolito & Francesco Ferella, 2023. "Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply," Energies, MDPI, vol. 16(12), pages 1-18, June.
    19. Hongjun Fan & Hossein Enshaei & Shantha Gamini Jayasinghe, 2022. "Formation of Dataset for Fuzzy Quantitative Risk Assessment of LNG Bunkering SIMOPs," Data, MDPI, vol. 7(5), pages 1-13, May.
    20. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.